1
|
Hua Y, Li L, Zhang H, Guo GC. Advances in crystalline metal-organic photochromic materials. Chem Commun (Camb) 2025; 61:5422-5434. [PMID: 40114647 DOI: 10.1039/d4cc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Metal-organic materials have undergone rapid advancements due to their unique structural properties and exceptional application potential. As a key branch, crystalline metal-organic photochromic materials (CMOPMs), have attracted significant attention for their ability to modulate physical properties in response to light stimulation, thereby expanding the research landscape of metal-organic materials in areas such as molecular switch, gas adsorption and separation, and sensing applications. Furthermore, light as a renewable and clean energy source significantly enhances its application potential. In this feature article, we review the design and synthesis strategies, classification, and applications of CMOPMs. Finally, we present the opportunities and challenges for the development of CMOPMs.
Collapse
Affiliation(s)
- Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Zhang NN, Zhang YN, Li L, Li ZY, Liu YT, Dong Y, Yan Y, Wang MS. Photochromism and single-component white light emission from a metalloviologen complex based on 1,5-naphthyridine. Dalton Trans 2024; 53:6547-6555. [PMID: 38517702 DOI: 10.1039/d3dt04250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Metalloviologens, as emerging electron-transfer photochromic compounds, have shown intriguing properties such as radiochromism, photochromism and photoconductance. However, only a limited number of them have been reported so far. Exploration of new metalloviologens is strongly desired. Herein, we report a new solvothermally synthesized metalloviologen complex [CdCl2(ND)2]n (1, ND = 1,5-naphthalenes) that exhibits photochromic and intrinsic white light emission properties. Density functional theory calculation results reveal that the photochromism could be assigned to photoinduced electron transfer from chlorine atoms to ND molecules. The photoinduced charge-separated states are heat/air stable, attributed to the delocalization of ND and strong intermolecular π-π interactions. Besides, complex 1 consistently emits intrinsic white light when excited with 340-370 nm UV light, achieving high color rendering index (CRI) values (82.54-94.04). By adjusting the excitation wavelength, both "warm" and "cold" white light emission can be produced, making it suitable for the application of a white light emitting diode (WLED). Thus, this work demonstrates that the ND-based metalloviologen is not only helpful in producing photochromism, but also beneficial for creating white-light emission.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Ya-Nan Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Zhen-Yu Li
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ya-Tong Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Yunyun Dong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Yong Yan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| |
Collapse
|
3
|
Qin QP, Lu J, Sun C, Wang MS, Guo GC. Design Strategy for Improving Detection Sensitivity in a Bromoplumbate Photochromic Semiconductor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307333. [PMID: 37967329 DOI: 10.1002/smll.202307333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Indexed: 11/17/2023]
Abstract
Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4 (Pb3 Br10 )(PhSQ)2 ]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.
Collapse
Affiliation(s)
- Qiu-Pei Qin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
| | - Cai Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
| |
Collapse
|
4
|
Xie J, Hou H, Lu H, Lu F, Liu W, Wang X, Cheng L, Zhang Y, Wang Y, Wang Y, Diwu J, Hu B, Chai Z, Wang S. Photochromic Uranyl-Based Coordination Polymer for Quantitative and On-Site Detection of UV Radiation Dose. Inorg Chem 2023; 62:15834-15841. [PMID: 37724987 DOI: 10.1021/acs.inorgchem.3c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.
Collapse
Affiliation(s)
- Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifan Lu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Fang H, Chen FH, Zhang SQ, Lin MJ. Three Semiconductive 1D Naphthalene Diimide/Iodoplumbate Perovskites with High Moisture Tolerance and Long-Lived Charge Separation States. Inorg Chem 2023. [PMID: 37267590 DOI: 10.1021/acs.inorgchem.3c01139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Low-dimensional inorganic-organic hybrid perovskites with high moisture tolerance and long-lived charge separation states have captured significant attention in the field of optoelectronic devices. To further achieve the relationship between crystal structures and stability, as well as charge separation behaviors, three one-dimensional hybrid perovskites containing electron-deficient naphthalene diimide ammonium (NDIEA) and electron-rich iodoplumbate chains, [(H2NDIEA)Pb2I6]·2DMF (1), [(H2NDIEA)2Pb5I14·(DMF)2]·4DMF (2), and [(HNDIEA)2Pb2I6]·3H2O (3), were synthesized. Crystal structure determinations revealed various synthesis conditions leading to different stacking modes, especially the inorganic lead iodide fraction, which resulted in different water resistances and charge-separated behaviors. The comprehensive analysis found that strong intermolecular interactions (anion-π interactions and π-π interactions), and matching energy levels between protonated NDIEA and iodoplumbate chains, can facilitate the generation of long-lived charge separation states and extraordinary moisture stability, even in the water environment. In addition, the conductivity behavior of 3 was also explored in detail.
Collapse
Affiliation(s)
- Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fu-Hai Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|