1
|
Akiyama A, Hossain S, Niihori Y, Oiwa K, Roy J, Kawawaki T, Pradeep T, Negishi Y. Enhancement of Photoluminescence Quantum Yield of Silver Clusters by Heavy Atom Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500700. [PMID: 40026022 DOI: 10.1002/smll.202500700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Many ligand-protected metal clusters exhibit phosphorescence at room temperature. However, strategies for improving their phosphorescence quantum yield, a critical parameter of performance, remain poorly developed. In contrast, fluorescent dyes are commonly modified by introducing heavy atoms, such as iodine (I), to enhance intersystem crossing in the excited state, thereby harnessing the heavy atom effect to increase phosphorescence efficiency. In this study, a pair of ligand-protected silver (Ag) clusters is successfully synthesized with internal cavities encapsulating anions (Xz -), namely sulfide ions (S2-) or iodide ions (I-), which significantly differ in atomic number each other. Single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy revealed that the resulting Ag clusters are composed of X@Ag54S20(thiolate)20(sulfonate)m, where (X, m) = (S, 12) or (I, 11). X-ray photoelectron spectroscopy revealed that the Ag atoms in these compounds exhibit a mixed-valence state. Furthermore, experiments on their photoluminescence revealed that a heavy central anion induced an internal heavy-atom effect similar to that observed in organic fluorescent dyes. As a result, the phosphorescence quantum yield became 16 times higher when S2- is replaced by I- as the central atom.
Collapse
Affiliation(s)
- Aoi Akiyama
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kazutaka Oiwa
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jayoti Roy
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Tokuhisa Kawawaki
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
2
|
Jin Y, Zhang Z, Zheng H, Cheng X, Geng L, Zhou Z, Han H. Unveiling the Formation Mechanism for Binary Semiconductor Nanoclusters: a Two-Step Pathway to a Double-Shell Structured Copper Sulfide Nanocluster. ACS NANO 2024; 18:33681-33695. [PMID: 39585078 DOI: 10.1021/acsnano.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This work represents an important step in the quest to unveil the formation mechanism of atomically precise binary semiconductor nanoclusters. In this study, we develop an acid-assisted C-S bond cleavage approach, wherein the C-S bonds in the metal thiolate precursor can be readily cleaved to release S2- with the assistance of a suitable acid in the presence of Cu2O as the catalyst. This process spontaneously fosters the formation of a [-Cu-S-Cu-] framework and promotes the structural growth into a high nuclearity assembly. Specifically, by employing Cu(I) tert-butyl thiolate ([CuStBu]∞) and carboxylate acid CH2═CHCOOH as the copper/sulfur precursor and C-S bond "scissor", a high-nuclearity nanocluster [S-Cu56] (Cu56S12(OOCCH═CH2)12(SC(CH3)3)20) featuring a double-shell configuration has been effectively prepared in high yield. Importantly, the [CuStBu]∞ precursor and the intermediate [S-Cu14] (Cu14(StBu)8(OOCCH═CH2)6) cluster have also been successfully isolated and structurally characterized, which ultimately enables the establishment of a two-step formation pathway for the [S-Cu56] nanocluster. Furthermore, in contrast to conventional reduction synthetic routes for metal nanoclusters containing Cu(0) or Cu(I), the acid-assisted C-S bond cleavage approach represents an oxidation process with respect to the constituent metals, yielding highly charged Cu(II) cations in the copper sulfide nanocluster.
Collapse
Affiliation(s)
- Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xianghan Cheng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
3
|
Yang L, Bigdeli F, Yang X, Hou LL, Ma Y, Jiang WY, Li XH, Wang LX, Yang T, Wang K, Wei J, Morsali A, Liu KG. Molybdate-Templated Luminescent Silver Alkynyl Nanoclusters: Total Structure Determination and Optical Property Analysis. Inorg Chem 2024; 63:7631-7639. [PMID: 38625102 DOI: 10.1021/acs.inorgchem.3c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two novel MoO42--templated luminescent silver alkynyl nanoclusters with 20-nuclearity ([(MoO42-)@Ag20(C≡CtBu)8(Ph2PO2)7(tfa)2]·(tfa-) (1)) and 18-nuclearity ([(MoO42-)@Ag18(C≡CtBu)8(Ph2PO2)7]·(OH) (2)) (tfa = trifluoroacetate) were synthesized with the green light maximum emissions at 507 and 516 nm, respectively. The nanoclusters were investigated and characterized by single-crystal X-ray crystallography, electrospray ionization mass spectrum (ESI-MS), X-ray photoelectron spectroscopy, thermogravimetry (TG), photoluminescence (PL), ultraviolet-visible (UV-vis) spectroscopy, and density functional theory calculations (DFT). The two nanoclusters differ in their structure by a supplementary [Ag2(tfa)2] organometallic surface motif, which significantly participates in the frontier molecular orbitals of 1, resulting in similar bonding patterns but different optical properties between the two clusters. Indeed, both nanoclusters show strong temperature-dependent photoluminescence properties, which make them potential candidates in the fields of optical devices for further applications.
Collapse
Affiliation(s)
- Le Yang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Xiaojiao Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Lin-Lin Hou
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yue Ma
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wen-Ya Jiang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xian-Hao Li
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Ling-Xiao Wang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Tang Yang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kangzhou Wang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Kuan-Guan Liu
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
4
|
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn 3O 4@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials 2024; 305:122449. [PMID: 38194734 DOI: 10.1016/j.biomaterials.2023.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial role in the process of osteoarthritis (OA), which may be a promising target for therapy of OA. In this study, novel mitochondrial-targeting and SOD-mimic Mn3O4@PDA@Pd-SS31 nanozymes with near-infrared (NIR) responsiveness and synergistic cascade to scavenge mROS were designed for the therapy of OA. Results showed that the nanozymes accelerated the release of Pd and Mn3O4 under NIR irradiation, exhibiting enhanced activities of SOD and CAT mimic enzymes with reversed mitochondrial dysfunction and promoted mitophagy to effectively scavenge mROS from chondrocytes, modulate the microenvironment of oxidative stress, and eventually inhibit the inflammatory response. Nanozymes were excreted in vivo through intestinal metabolic pathway and had good biocompatibility, effectively reducing the inflammatory response and relieving articular cartilage degeneration in OA joints, with a reduction of 93.7 % and 93.8 % in OARSCI scores for 4 and 8 weeks respectively. Thus, this study demonstrated that the mitochondria targeting and NIR responsive Mn3O4@PDA@Pd-SS31 nanozymes could efficiently scavenge mROS, repair damaged mitochondrial function and promote cartilage regeneration, which are promising for the treatment of OA in clinical applications.
Collapse
Affiliation(s)
- Yuquan Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoming Chen
- Department of Spine Osteopathia, The First Affifiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Wang HH, Wei J, Bigdeli F, Rouhani F, Su HF, Wang LX, Kahlal S, Halet JF, Saillard JY, Morsali A, Liu KG. Monocarboxylate-protected two-electron superatomic silver nanoclusters with high photothermal conversion performance. NANOSCALE 2023; 15:8245-8254. [PMID: 37073517 DOI: 10.1039/d3nr00571b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first series of monocarboxylate-protected superatomic silver nanoclusters was synthesized and fully characterized by X-ray diffraction, fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and electrospray ionization mass spectrometry (ESI-MS). Specifically, compounds [Ag16(L)8(9-AnCO2)12]2+ (L = Ph3P (I), (4-ClPh)3P (II), (2-furyl)3P (III), and Ph3As (IV)) were prepared by a solvent-thermal method under alkaline conditions. These clusters exhibit a similar unprecedented structure containing a [Ag8@Ag8]6+ metal kernel, of which the 2-electron superatomic [Ag8]6+ inner core shows a flattened and puckered hexagonal bipyramid of S6 symmetry. Density functional theory calculations provide a rationalization of the structure and stability of these 2-electron superatoms. Results indicate that the 2 superatomic electrons occupy a superatomic molecular orbital 1S that has a substantial localization on the top and bottom vertices of the bipyramid. The π systems of the anthracenyl groups, as well as the 1S HOMO, are significantly involved in the optical and photothermal behavior of the clusters. The four characterized nanoclusters show high photothermal conversion performance in sunlight. These results show that the unprecedented use of mono-carboxylates in the stabilization of Ag nanoclusters is possible, opening the door for the introduction of various functional groups on their cluster surface.
Collapse
Affiliation(s)
- Hao-Hai Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jianyu Wei
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Hai-Feng Su
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Ling-Xiao Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Kuan-Guan Liu
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| |
Collapse
|