1
|
Gómez de Segura D, Corral-Zorzano A, Alcolea E, Moreno MT, Lalinde E. Phenylbenzothiazole-Based Platinum(II) and Diplatinum(II) and (III) Complexes with Pyrazolate Groups: Optical Properties and Photocatalysis. Inorg Chem 2024; 63:1589-1606. [PMID: 38247362 PMCID: PMC10806813 DOI: 10.1021/acs.inorgchem.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Based on 2-phenylbenzothiazole (pbt) and 2-(4-dimethylaminophenyl)benzothiazole (Me2N-pbt), mononuclear [Pt(pbt)(R'2-pzH)2]PF6 (R'2-pzH = pzH 1a, 3,5-Me2pzH 1b, 3,5-iPr2pzH 1c) and diplatinum (PtII-PtII) [Pt(pbt)(μ-R'2pz)]2 (R'2-pz = pz 2a, 3,5-Me2pz 2b, 3,5-iPr2pz 2c) and [Pt(Me2N-pbt)(μ-pz)]2 (3a) complexes have been prepared. In the presence of sunlight, 2a and 3a evolve, in CHCl3 solution, to form the PtIII-PtIII complexes [Pt(R-pbt)(μ-pz)Cl]2 (R = H 4a, NMe2 5a). Experimental and computational studies reveal the negligible influence of the pyrazole or pyrazolate ligands on the optical properties of 1a-c and 2a,b, which exhibit a typical 3IL/3MLCT emission, whereas in 2c the emission has some 3MMLCT contribution. 3a displays unusual dual, fluorescence (1ILCT or 1MLCT/1LC), and phosphorescence (3ILCT) emissions depending on the excitation wavelength. The phosphorescence is lost in aerated solutions due to sensitization of 3O2 and formation of 1O2, whose determined quantum yield is also wavelength dependent. The phosphorescence can be reversibly photoinduced (365 nm, ∼ 15 min) in oxygenated THF and DMSO solutions. In 4a and 5a, the lowest electronic transitions (S1-S3) have mixed characters (LMMCT/LXCT/L'XCT 4a and LMMCT/LXCT/ILCT 5a) and they are weakly emissive in rigid media. The 1O2 generation property of complex 3a is successfully used for the photooxidation of p-bromothioanisol showing its potential application toward photocatalysis.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química, Instituto
de Investigación en Química (IQUR), Complejo Científico
Tecnológico, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| | - Andrea Corral-Zorzano
- Departamento de Química, Instituto
de Investigación en Química (IQUR), Complejo Científico
Tecnológico, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| | - Eduardo Alcolea
- Departamento de Química, Instituto
de Investigación en Química (IQUR), Complejo Científico
Tecnológico, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| | - M. Teresa Moreno
- Departamento de Química, Instituto
de Investigación en Química (IQUR), Complejo Científico
Tecnológico, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| | - Elena Lalinde
- Departamento de Química, Instituto
de Investigación en Química (IQUR), Complejo Científico
Tecnológico, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| |
Collapse
|
2
|
Zhang YL, He TF, Zhao ZK, Shen A, Gao Q, Ren AM, Su ZM, Li H, Chu HY, Zou LY. Self-Consistent Quantum Mechanics/Embedded Charge Study on Aggregation-Enhanced Delayed Fluorescence of Cu(I) Complexes: Luminescence Mechanism and Molecular Design Strategy. Inorg Chem 2023; 62:7753-7763. [PMID: 37154416 DOI: 10.1021/acs.inorgchem.3c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.
Collapse
Affiliation(s)
- Yun-Li Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- College of Chemistry, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350 Tianjin, China
| | - Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ao Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|