1
|
Wang H, Yang S, Fan W, Cui Y, Gong G, Jiao L, Chen S, Qi J. Sight into a Rare-Earth-Based Catalyst with Spatial Confinement Effect from the Perspective of Electronic Structure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14749-14772. [PMID: 40022656 DOI: 10.1021/acsami.4c17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Rare-earth elements include 15 kinds of lanthanides as well as Sc and Y elements. Interestingly, the special electronic configuration of a lanthanide rare earth is [Xe]4fn5d0-16s2 (n = 0-14), which results in rare-earth materials' unique activity in such areas as thermal catalysis, electrocatalysis, photocatalysis, etc. It is worth noting that a class of materials with spatial confinement effects are playing an increasingly important role in the catalytic performance; especially, the construction of hollow multishelled structures (HoMSs) can further enhance the activity of rare-earth catalytic materials. In this review, we discuss in depth the important roles of the rare-earth 4f5d electronic structure. Subsequently, this review systematically summarizes the synthesis methods of rare-earth HoMSs and their research progress in the field of catalysis and specifically introduces the advanced characterization and analysis methods of rare-earth HoMSs. Finally, the research directions, application prospects, and challenges that need to be focused on in the future of rare-earth-based HoMSs are discussed and anticipated. We believe that this review will not only inspire more creativity in optimizing the local electronic structure and spatial confinement structure design of rare-earth-based catalysts but also provide valuable insights for designing other types of catalysts.
Collapse
Affiliation(s)
- Huan Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Shiduo Yang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Wenlin Fan
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Yinghan Cui
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Guannan Gong
- Public Management and Modern Service Department, Hebei Vocational College of Labour Relations, Shijiazhuang 050093, P. R. China
| | - Lishi Jiao
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Sen Chen
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
He D, Li Y, Liu Y, Chen Y, Zhao M, Wang J, Chen Y. Optimizing cooperative catalysis of multiple defective interfaces in Pt/mullite catalysts for NO oxidation. J Colloid Interface Sci 2025; 678:1064-1076. [PMID: 39341138 DOI: 10.1016/j.jcis.2024.09.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Nitric oxide (NO) oxidation is an integral part of the nitrogen chemical cycle, but competitive activation of NO/O2 over single platinum (Pt)-based catalysts result in inadequate low temperature performance. Here, we constructed catalysts with BiMn2O5/CeO2 and Pt/BiMn2O5 defective interfaces (sufficient activation of NO/O2). The constructed catalyst achieved 95 % NO conversion at 260 °C in NO/O2 atmosphere, superior to most known catalysts. Even after aging (800 °C for 16 h), the NO conversion was up to 76 %. Further, the catalyst can be applied to actual diesel exhaust. Detailed oxygen vacancies (Ov) characterization reveals that BiMn2O5/CeO2 defective interface created by Ce3+-Ov + Mn4+-O ↔ Ce4+-O + Mn3+-Ov promote the activation of NO (on Mn3+ sites) and O2 (on Mn3+-Ov sites). Besides, the Ov on Pt/BiMn2O5 defective interface compensate for the loss of Pt sites ensuring hydrothermal stability. And this construction of multiple defective interfaces develops a pathway for boosting catalytic reactions.
Collapse
Affiliation(s)
- Darong He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yaxin Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yunfeng Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ming Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China.
| | - Jianli Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China.
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China; Institute of New Energy and Low-Carbon Technology, Chengdu 610064, Sichuan, China
| |
Collapse
|
3
|
Guo Q, Liu Y, Zhang X, Xu Y, Liu P, Zhang C. Enhanced NO x-assisted soot combustion by cobalt doping to weaken mullite Mn-O bonds for lattice oxygen activation. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136474. [PMID: 39571370 DOI: 10.1016/j.jhazmat.2024.136474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 01/26/2025]
Abstract
Catalytic combustion is widely regarded as the most efficient technique for removing soot particulates from diesel engine exhaust, with its efficiency largely dependent on the performance of catalysts. In this study, a series of YMn1-xCoxO5-ζ catalysts were synthesized using a hydrothermal method to investigate their catalytic properties in soot oxidation. Among these catalysts, YMCo-0.2 exhibited the highest catalytic activity, achieving 90 % soot conversion at 392 °C and demonstrating robust tolerance in the presence of water vapor and SO2. Structural characterization revealed that Co doping did not alter the fundamental crystal structure of YMn2O5 mullite. Through some characterization comprehensive analysis, and DFT calculations further supported the experimental findings, indicate that Co substitution significantly increased the lattice oxygen mobility and surface active oxygen content. Compared to the surface lattice oxygens at other positions, the weakening of the Mn-O bond results in the lattice oxygens in the Co-O-Mn4+ sites in the catalysts exhibiting higher reactivity. Additionally, the catalyst displayed strong NO and O2 adsorption and activation capabilities, indicating its potential for efficient NOx-assisted soot combustion. This study provides insights for designing and optimizing mullite catalysts for soot combustion.
Collapse
Affiliation(s)
- Qilong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yaodi Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xinran Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yupu Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Changsen Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
4
|
Huang W, Li Q, Deng C, Zong Z, Du Y, Lu R, Dong L, Xia D. Unravelling High Water Vapor-Induced Inhibitory Effects on Pt/Co 3O 4 Catalysts toward Benzene Oxidation. Inorg Chem 2024; 63:15516-15526. [PMID: 39102647 DOI: 10.1021/acs.inorgchem.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Water vapor inevitably exists in the environment, which causes adverse impacts on many crucial chemical reactions. However, high water vapor of up to 10 vol %─relevant to a broad spectrum of industrial practices-for catalytic implications has been less investigated or neglected. As such, we explored an industry-relevant, humidity-highly sensitive benzene oxidation only in the presence of 10 vol % water vapor using the well-established Pt/Co3O4 catalysts, to bring such an important yet ignored topic to the forefront. Results revealed that Pt/Co3O4 catalysts possessing higher contents of Pt nanoparticles exhibited marked tolerance to water vapor interference. Under an incomplete benzene conversion condition, the input of 10 vol % water vapor indeed impaired the catalytic performance of Pt/Co3O4 catalyst significantly, which, in fact, was caused by the unfavorable formation of carboxylate species covering the catalyst's surface engendering irrecoverable activity loss, instead of the well-accepted water competitive adsorption. While such activity loss can be restored by elevating the reaction to a higher temperature. This study helps us to understand the compromised catalytic activity caused by high humidity, urging the systematic evaluation of well-established catalyst systems in high water vapor-contained conditions and pressing the development of water-tolerant catalysts for real-life application consideration.
Collapse
Affiliation(s)
- Wanting Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiyuan Zong
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Yushan Du
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruifang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dong Xia
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| |
Collapse
|
5
|
Jiang F, Xie W, Deng Y, Chen K, Li J, Huang XY, Yu H, Li Y, Wu L, Deng Y. Maillard Reaction Inspired Microexplosion toward Fast Synthesis of Two-Dimensional Mesoporous Tin Oxides for Efficient Chemiresistive Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28928-28937. [PMID: 38795031 DOI: 10.1021/acsami.4c06072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Two-dimensional (2D) mesoporous transition metal oxides are highly desired in various applications, but their fast and low-cost synthesis remains a great challenge. Herein, a Maillard reaction inspired microexplosion approach is applied to rapidly synthesize ultrathin 2D mesoporous tin oxide (mSnO2). During the microexplosion between granular ammonia nitrate with melanoidin at high temperature, the organic species can be carbonized and expanded rapidly due to the instantaneous release of gases, thus producing ultrathin carbonaceous templates with rich functional groups to effectively anchor SnO2 nanoparticles on the surface. The subsequent removal of carbonaceous templates via calcination in air results in the formation of 2D mSnO2 due to the confinement effect of the templates. Pd nanoparticles are controllably deposited on the surface of 2D mSnO2 via in situ reduction, forming ultrathin 2D Pd/mSnO2 nanocomposites with thicknesses of 6-8 nm. Owing to the unique 2D mesoporous structure with rich oxygen defects and highly exposed metal-metal oxide interfaces, 2D Pd/mSnO2 exhibits excellent sensing performance toward acetone with high sensitivity, a short response time, and good selectivity under low working temperature (100 °C). This fast and convenient microexplosion synthesis strategy opens up the possibility of constructing 2D porous functional materials for various applications including high-performance gas sensors.
Collapse
Affiliation(s)
- Fengluan Jiang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenhe Xie
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yu Deng
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Keyu Chen
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Jichun Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Xin-Yu Huang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Hongxiu Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yaobang Li
- Zhejiang Fulai New Materials, Co. Ltd., Jiaxing, Zhejiang Province 314103, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
6
|
Wu S, Ruan D, Huang Z, Xu H, Shen W. Weakening Mn-O Bond Strength in Mn-Based Perovskite Catalysts to Enhance Propane Catalytic Combustion. Inorg Chem 2024; 63:10264-10277. [PMID: 38761140 DOI: 10.1021/acs.inorgchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Exploring highly efficient and robust non-noble metal catalysts for VOC abatement is crucial but challenging. Mn-based perovskites are a class of redox catalysts with good thermal stability, but their activity in the catalytic combustion of light alkanes is insufficient. In this work, we modulated the Mn-O bond strength in a Mn-based perovskite via defect engineering, over which the catalytic activity of propane combustion was significantly enhanced. It demonstrates that the oxygen vacancy concentration and the Mn-O bond strength can be efficiently modulated by finely tuning the Ni content in SmNixMn1-xO3 perovskite catalysts (SNxM1-x), which in turn can enhance the redox ability and generate more active oxygen species. The SN0.10M0.90 catalyst with the lowest Mn-O bond strength exhibits the lowest apparent activation energy, over which the propane conversion rate increases by 3.6 times compared to that on the SmMnO3 perovskite catalyst (SM). In addition, a SN0.10M0.90/cordierite monolithic catalyst can also exhibit a remarkable catalytic performance and deliver excellent long-term durability (1000 h), indicating broad prospects in industrial applications. Moreover, the promotional effect of Ni substitution was further unveiled by density functional theory (DFT) calculations. This work brings a favorable guidance for the exploration of highly efficient perovskite catalysts for light alkane elimination.
Collapse
Affiliation(s)
- Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Dinghua Ruan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| |
Collapse
|
7
|
Li H, Wang W, Xu J, Wang A, Wan X, Yang L, Zhao H, Shan Q, Zhao C, Sun S, Wang W. Mn-Based Mullites for Environmental and Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312685. [PMID: 38618925 DOI: 10.1002/adma.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Mn-based mullite oxides AMn2O5 (A = lanthanide, Y, Bi) is a novel type of ternary catalyst in terms of their electronic and geometric structures. The coexistence of pyramid Mn3+-O and octahedral Mn4+-O makes the d-orbital selectively active toward various catalytic reactions. The alternative edge- and corner-sharing stacking configuration constructs the confined active sites and abundant active oxygen species. As a result, they tend to show superior catalytic behaviors and thus gain great attention in environmental treatment and energy conversion and storage. In environmental applications, Mn-based mullites have been demonstrated to be highly active toward low-temperature oxidization of CO, NO, volatile organic compounds (VOCs), etc. Recent research further shows that mullites decompose O3 and ozonize VOCs from -20 °C to room temperature. Moreover, mullites enhance oxygen reduction reactions (ORR) and sulfur reduction reactions (SRR), critical kinetic steps in air-battery and Li-S batteries, respectively. Their distinctive structures also facilitate applications in gas-sensitive sensing, ionic conduction, high mobility dielectrics, oxygen storage, piezoelectricity, dehydration, H2O2 decomposition, and beyond. A comprehensive review from basic physicochemical properties to application certainly not only gains a full picture of mullite oxides but also provides new insights into designing heterogeneous catalysts.
Collapse
Affiliation(s)
- Huan Li
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Wanying Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Jinchao Xu
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Ansheng Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Xiang Wan
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Liyuan Yang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Haojun Zhao
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Qingyu Shan
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Chunning Zhao
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Shuhui Sun
- Institute National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Québec J3×1P7, Varennes, Canada
| | - Weichao Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Li Q, Deng C, Zhou W, Huang P, Lu C, Feng H, Dong L, Tan L, Zhang YW, Zhou C, Qin Y, Xia D. Ultrathin La yCoO x Nanosheets with High Porosity Featuring Boosted Catalytic Oxidation of Benzene: Mechanism Elucidation via an Experiment-Theory Combined Paradigm. Inorg Chem 2024; 63:3974-3985. [PMID: 38346714 DOI: 10.1021/acs.inorgchem.3c04621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Designing transition-metal oxides for catalytically removing the highly toxic benzene holds significance in addressing indoor/outdoor environmental pollution issues. Herein, we successfully synthesized ultrathin LayCoOx nanosheets (thickness of ∼1.8 nm) with high porosity, using a straightforward coprecipitation method. Comprehensive characterization techniques were employed to analyze the synthesized LayCoOx catalysts, revealing their low crystallinity, high surface area, and abundant porosity. Catalytic benzene oxidation tests demonstrated that the La0.029CoOx-300 nanosheet exhibited the most optimal performance. This catalyst enabled complete benzene degradation at a relatively low temperature of 220 °C, even under a high space velocity (SV) of 20,000 h-1, and displayed remarkable durability throughout various catalytic assessments, including SV variations, exposure to water vapor, recycling, and long time-on-stream tests. Characterization analyses confirmed the enhanced interactions between Co and doped La, the presence of abundant adsorbed oxygen, and the extensive exposure of Co3+ species in La0.029CoOx-300 nanosheets. Theoretical calculations further revealed that La doping was beneficial for the formation of oxygen vacancies and the adsorption of more hydroxyl groups. These features strongly promoted the adsorption and activation of oxygen, thereby accelerating the benzene oxidation processes. This work underscores the advantages of doping rare-earth elements into transition-metal oxides as a cost-effective yet efficient strategy for purifying industrial exhausts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Peng Huang
- Henry Royce Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Haisong Feng
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yi Qin
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Dong Xia
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| |
Collapse
|