1
|
Shi Y, Wen D, Zhao S. Green CS 2 Conversion Catalyzed by a Three-Dimensional Porous Cerium-Organic Framework. Inorg Chem 2025; 64:4387-4392. [PMID: 39999564 DOI: 10.1021/acs.inorgchem.4c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Excessive emissions of industrial waste carbon dioxide (CS2) seriously damage the ecological environment. The green and effective conversion into economically valuable chemicals is an emerging approach. Hence, a novel three-dimensional cerium-organic framework (1) was constructed by 4,4',4″-nitrilotribenzoic acid and Ce(NO3)3·6H2O, which exhibited high thermal and solvent stability. A unique square channel, rich Lewis acid sites, and stable framework make 1 an efficient catalyst to promote the cycloaddition of CS2 with aziridine substrates under mild conditions and circulate five times without a significant decrease in activity. Mechanism exploration indicated that the activation, confinement effect, and multicomponent synergistic effect of catalyst 1 promoted the conversion process.
Collapse
Affiliation(s)
- Ying Shi
- Chemistry & Environmental Science College, Inner Mongolia Normal University, Huhehaote, Inner Mongolia 010022, China
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Dusu Wen
- Chemistry & Environmental Science College, Inner Mongolia Normal University, Huhehaote, Inner Mongolia 010022, China
| | - SiQin Zhao
- Chemistry & Environmental Science College, Inner Mongolia Normal University, Huhehaote, Inner Mongolia 010022, China
| |
Collapse
|
2
|
Beiranvand M, Habibi D, Khodakarami H. A novel pillar-layered MOF with urea linkers as a capable catalyst for synthesis of new 1,8-naphthyridines via the anomeric-based oxidation. Sci Rep 2024; 14:27727. [PMID: 39532920 PMCID: PMC11557916 DOI: 10.1038/s41598-024-66539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Metal-based catalysts play an essential role in organic chemistry and the chemical industry. This research designed and successfully synthesized a pillar-layered metal-organic framework (MOF) with the urea linkers, namely Basu-HDI, as a novel and efficient heterogeneous catalyst. Various techniques such as FT-IR, EDX, elemental mapping, SEM, XRD, BET, and TGA/DTA studied its structure and morphology. Then, we investigated the synthesis of new 1,8-naphthyridines utilizing Basu-HDI in mild conditions via a one-pot, three-component tandem Knoevenagel/Michael/ cyclization/anomeric-based oxidation reaction. Final products were achieved by anomeric-based oxidation without employing an oxidation agent. Remarkably, this tandem process gave a good range of new 1,8-naphthyridines with high yields in a short reaction time. The pure products were confirmed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry techniques. Moreover, the introduced catalyst showed good efficiency and stability and can be reused four times without significantly reducing efficiency.
Collapse
Affiliation(s)
- Masoumeh Beiranvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Hosein Khodakarami
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
3
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
4
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
5
|
Navazeni M, Zolfigol MA, Ahmadi H, Sepehrmansourie H, Khazaei A, Hosseinifard M. Design, synthesis and application of a magnetic H-bond catalyst in the preparation of new nicotinonitriles via cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:16607-16616. [PMID: 38779389 PMCID: PMC11110150 DOI: 10.1039/d4ra01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, we designed and synthesized a new H-bond magnetic catalyst with 2-tosyl-N-(3-(triethoxysilyl)propyl)hydrazine-1-carboxamide as a sensitive H-bond donor/acceptor. We created an organic structure with a urea moiety on the magnetic nanoparticles, which can function as a hydrogen bond catalyst. Hydrogen bond catalysts serve as multi-donor/-acceptor sites. Additionally, we utilized magnetic nanoparticles in the production of the target catalyst, giving it the ability to be recycled and easily separated from the reaction medium with an external magnet. We evaluated the catalytic application of Fe3O4@SiO2@tosyl-carboxamide as a new magnetic H-bond catalyst in the synthesis of new nicotinonitrile compounds through a multicomponent reaction under solvent-free and green conditions with high yields (50-73%). We confirmed the structure of Fe3O4@SiO2@tosyl-carboxamide using various techniques. In addition, the structures of the desired nicotinonitriles were confirmed using melting point, 1H-NMR, 13C-NMR and HR-mass spectrometry analysis. The final step of the reaction mechanism was preceded via cooperative vinylogous anomeric-based oxidation (CVABO).
Collapse
Affiliation(s)
- Mahdiyeh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hossein Ahmadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P. O. Box 31787-316 Karaj 401602 Iran
| |
Collapse
|
6
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
7
|
Kalhor S, Sepehrmansourie H, Zarei M, Zolfigol MA, Shi H. Application of Functionalized Zn-Based Metal-Organic Frameworks (Zn-MOFs) with CuO in Heterocycle Synthesis via Azide-Alkyne Cycloaddition. Inorg Chem 2024; 63:4898-4914. [PMID: 38296524 DOI: 10.1021/acs.inorgchem.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The main goal of this article is to discuss the expansion of click chemistry. A new catalyst composed of CuO nanoparticles embedded in Zn-MOF with the ligand 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (H3L) is presented. The incorporation of CuO nanoparticles into the Zn-MOF structure led to desirable morphology and catalytic properties. The designed catalyst was evaluated for its catalytic role in the multicomponent reaction and copper-catalyzed azide-alkyne cycloaddition (CuAAC) for preparation of triazole rings with 80-91% yield. The catalyst demonstrated an appealing architecture and exhibited robustness, high efficiency, and environmental friendliness. Characterization of the catalyst was performed using various techniques, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopes (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and X-ray diffraction (XRD). The results suggest that this novel catalyst has the potential to be a valuable tool in the development of new synthetic approaches for a wide range of applications.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37161-46611, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Babaee S, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M. Synthesis of picolinates via a cooperative vinylogous anomeric-based oxidation using UiO-66(Zr)-N(CH 2PO 3H 2) 2 as a catalyst. RSC Adv 2023; 13:22503-22511. [PMID: 37497088 PMCID: PMC10368083 DOI: 10.1039/d3ra03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The anomeric effect highlights the significant influence of the functional group and reaction conditions on oxidation-reduction. This article successfully investigates the anomeric effect in the synthesis of picolinate and picolinic acid derivatives through a multi-component reaction involving 2-oxopropanoic acid or ethyl 2-oxopropanoate, ammonium acetate, malononitrile, and various aldehydes. To facilitate this process, we employed UiO-66(Zr)-N(CH2PO3H2)2 as a novel nanoporous heterogeneous catalyst. The inclusion of phosphorous acid tags on the UiO-66(Zr)-N(CH2PO3H2)2 offers the potential for synthesizing picolinates at ambient temperature.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P.O. Box 31787-316 Karaj Iran
| |
Collapse
|
9
|
Mohammadi Rasooll M, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M, Gu Y. Catalytic Application of Functionalized Bimetallic-Organic Frameworks with Phosphorous Acid Tags in the Synthesis of Pyrazolo[4,3- e]pyridines. ACS OMEGA 2023; 8:25303-25315. [PMID: 37483221 PMCID: PMC10357449 DOI: 10.1021/acsomega.3c02580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst. This catalyst was used for the synthesis of pyrazolo[4,3-e]pyridine derivatives as suitable drug candidates. The present study provides new insights into the architecture of novel porous heterogeneous catalysts based on a bimetal-organic framework (bimetal-MOFs). The type of final structures of catalyst and pyrazolo[4,3-e]pyridine derivatives were determined using different techniques such as fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), SEM-elemental mapping, N2 adsorption-desorption isotherm, Barrett-Joyner-Halenda (BJH), thermogravimetry/differential thermal analysis (TG/DTA), 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 401602, Iran
| | - Yanlong Gu
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|