1
|
Warring L, Westendorff KS, Bennett MT, Nam K, Stewart BM, Dickie DA, Paolucci C, Gunnoe TB, Gilliard RJ. Carbodicarbene-Stibenium Ion-Mediated Functionalization of C(sp 3)-H and C(sp)-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202415070. [PMID: 39245628 DOI: 10.1002/anie.202415070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Main-group element-mediated C-H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3 (1) (pyCDC=bis-pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6-di-tert-butylpyridine to enable C(sp3)-H bond breaking to generate the stiba-methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2 (2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C-H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1 fashion, thereby weakening the C-H bond which can then be deprotonated by base in solution. Further, we show that 1 reacts with terminal alkynes in the presence of 2,6-di-tert-butylpyridine to enable C(sp)-H bond breaking to form stiba-alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2 (3 a-f). Compound 1 shows excellent specificity for the activation of the terminal C(sp)-H bond even across alkynes with diverse functionality. The resulting stiba-methylene nitrile and stiba-alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.
Collapse
Affiliation(s)
- Levi Warring
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| | - Karl S Westendorff
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Marc T Bennett
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Kijeong Nam
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Brennan M Stewart
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| |
Collapse
|
2
|
Murphy BL, Maltz LT, Gabbaï FP. Steric Selection of Anion Binding Sites by Organoantimony(V) Pnictogen Bond Donors: An Experimental and Computational Study. Inorg Chem 2024; 63:23568-23576. [PMID: 39626108 DOI: 10.1021/acs.inorgchem.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Catecholatostiboranes have emerged as useful Lewis acids in several applications. To better understand the factors that control the properties of these species, we examined the Lewis acidities of (o-C6Cl4O2)Sb(o-Tol)3 (2, Tol = tolyl) and (o-C6Cl4O2)Sb(p-Tol)3 (3), two triarylcatecholatostiboranes that differ by the nature of the aryl substituent. Fluoride anion binding studies indicate that 3 is more Lewis acidic than 2, a factor readily assigned to the steric crowding around antimony in the case of the o-tolyl derivative. But, while 3 binds F- trans to a Sb-Caryl bond as is typical of catecholatostiboranes, 2 prefers binding trans to a Sb-O bond. Computational analyses of 2 and 3 reveal the existence of several σ holes, and an activation strain analysis is employed to elucidate the origin of these stiboranes' anion-binding geometry preferences.
Collapse
Affiliation(s)
- Brendan L Murphy
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Logan T Maltz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
3
|
Zafar M, Subramaniyan V, Tibika F, Tulchinsky Y. Cationic ligands - from monodentate to pincer systems. Chem Commun (Camb) 2024; 60:9871-9906. [PMID: 38920056 DOI: 10.1039/d4cc01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
For a long time, the small group of cationic ligands stood out as obscure systems within the general landscape of coordinative chemistry. However, this situation has started to change rapidly during the last decade, with more and more examples of metal-coordinated cationic species being reported. The growing interest in these systems is not only of purely academic nature, but also driven by accumulating evidence of their high catalytic utility. Overcoming the inherently poor coordinating ability of cationic species often required additional structural stabilization. In numerous cases this was realized by functionalizing them with a pair of chelating side-arms, effectively constructing a pincer-type scaffold. This comprehensive review aims to encompass all cationic ligands possessing such pincer architecture reported to date. Herein every cationic species that has ever been embedded in a pincer framework is described in terms of its electronic structure, followed by an in-depth discussion of its donor/acceptor properties, based on computational studies (DFT) and available experimental data (IR, NMR or CV). We then elaborate on how the positive charge of these ligands affects the spectroscopic and redox properties, as well as the reactivity, of their complexes, compared to those of the structurally related neutral ligands. Among other systems discussed, this review also surveys our own contribution to this field, namely, the introduction of sulfonium-based pincer ligands and their complexes, recently reported by our group.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
4
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
5
|
Wenger JS, Johnstone TC. A Sterically Accessible Monomeric Stibine Oxide Activates Organotetrel(IV) Halides, Including C-F and Si-F Bonds. J Am Chem Soc 2024; 146:19350-19359. [PMID: 38959432 PMCID: PMC11258792 DOI: 10.1021/jacs.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Phosphine oxides and arsine oxides are common laboratory reagents with diverse applications that stem from the chemistry exhibited by these monomeric species. Stibine oxides are, in contrast, generally dimeric or oligomeric species because of the reactivity-quenching self-association of the highly polarized stiboryl (Sb=O/Sb+-O-) group. We recently isolated Dipp3SbO (Dipp = 2,6-diisopropylphenyl), the first example of a kinetically stabilized monomeric stibine oxide, which exists as a bench-stable solid and bears an unperturbed stiboryl group. Herein, we report the isolation of Mes3SbO (Mes = mesityl), in which the less bulky substituents maintain the monomeric nature of the compound but unlock access to a wider range of reactivity at the unperturbed stiboryl group relative to Dipp3SbO. Mes3SbO was found to be a potent Lewis base in the formation of adducts with the main-group Lewis acids PbMe3Cl and SnMe3Cl. The accessible Lewis acidity at the Sb atom results in a change in the reactivity with GeMe3Cl, SiMe3Cl, and CPh3Cl. With these species, Mes3SbO formally adds the E-Cl (E = Ge, Si, C) bond across the unsaturated stiboryl group to form a 5-coordinate stiborane. The biphilicity of Mes3SbO is sufficiently potent to activate even the C-F and Si-F bonds of C(p-MeOPh)3F and SiEt3F, respectively. These results mark a significant contribution to an increasingly rich literature on the reactivity of polar, unsaturated main-group motifs. Furthermore, these results highlight the utility of a kinetic stabilization approach to access unusual bonding motifs with unquenched reactivity that can be leveraged for small-molecule activation.
Collapse
Affiliation(s)
- John S. Wenger
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| | - Timothy C. Johnstone
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
6
|
Wenger JS, Johnstone TC. Recent advances in the stabilization of monomeric stibinidene chalcogenides and stibine chalcogenides. Dalton Trans 2024; 53:8524-8534. [PMID: 38717258 DOI: 10.1039/d4dt00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The elucidation of novel bonding situations at heavy p-block elements has greatly advanced recent efforts to access useful reactivity at earth-abundant main-group elements. Molecules with unsaturated bonds between heavier, electropositive elements and lighter, electronegative elements are often highly polarized and competent in small-molecule activations, but the reactivity of these molecules may be quenched by self-association of monomers to form oligomeric species where the polar, unsaturated groups are assembled in a head-to-tail fashion. In this Frontier, we discuss the synthetic strategies employed to isolate monomeric σ2,λ3-stibinidene chalcogenides (RSbCh) and monomeric σ4,λ5-stibine chalcogenides (R3SbCh). These classes of molecules each feature polarized antimony-chalcogenide bonds (Sb = Ch/Sb+-Ch-). We highlight how the synthesis and isolation of these molecules has led to the discovery of novel reactivity and has shed light on fundamental aspects of inorganic structure and bonding. Despite these advances, there are critical aspects of this chemistry that remain underdeveloped and we provide our perspective on yet-unrealized synthetic targets that may be achieved with the continued development of the strategies described herein.
Collapse
Affiliation(s)
- John S Wenger
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
7
|
Murphy B, Gabbaï FP. Tunable Pnictogen Bonding at the Service of Hydroxide Transport across Phospholipid Bilayers. J Am Chem Soc 2024; 146:7146-7151. [PMID: 38466939 PMCID: PMC10958499 DOI: 10.1021/jacs.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Our growing interest in the design of pnictogen-based strategies for anion transport has prompted an investigation into the properties of three simple triarylcatecholatostiboranes (1-3) of the general formula (o-C6Cl4O2)SbAr3 with Ar = Ph (1), o-tolyl (2), and o-xylyl (3) for the complexation and transport of hydroxide across phospholipid bilayers. A modified hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay carried out in artificial liposomes shows that 1 and 2 are potent hydroxide transporters while 3 is inactive. These results indicate that the steric hindrance imposed by the three o-xylyl groups prevents access by the hydroxide anion to the antimony center. Supporting this interpretation, 1 and 2 quickly react with TBAOH·30 H2O ([TBA]+ = [nBu4N]+) to form the corresponding hydroxoantimonate salts [nBu4N][1-OH] and [nBu4N][2-OH], whereas 3 resists hydroxide coordination and remains unperturbed. Moreover, the hydroxide transport activities of 1 and 2 are correlated to the +V oxidation state of the antimony atom as the parent trivalent stibines show no hydroxide transport activity.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|