1
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Mechanochemical Synthesis of MOF-303 and Its CO 2 Adsorption at Ambient Conditions. Molecules 2024; 29:2698. [PMID: 38893571 PMCID: PMC11173739 DOI: 10.3390/molecules29112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Metal-organic structures have great potential for practical applications in many areas. However, their widespread use is often hindered by time-consuming and expensive synthesis procedures that often involve hazardous solvents and, therefore, generate wastes that need to be remediated and/or recycled. The development of cleaner, safer, and more sustainable synthesis methods is extremely important and is needed in the context of green chemistry. In this work, a facile mechanochemical method involving water-assisted ball milling was used for the synthesis of MOF-303. The obtained MOF-303 exhibited a high specific surface area of 1180 m2/g and showed an excellent CO2 adsorption capacity of 9.5 mmol/g at 0 °C and under 1 bar.
Collapse
Affiliation(s)
- Sylwia Głowniak
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Barbara Szczęśniak
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Jerzy Choma
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Dai RD, Xie ZL, Liu C, Xin D, Zhou ZH. Crown ether-like octanuclear molybdenum(V) clusters for cation binding and gas adsorption. Dalton Trans 2024; 53:8980-8987. [PMID: 38717188 DOI: 10.1039/d4dt00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Octanuclear polyoxomolybdenum-based porous materials, Na8[Mo8O8(μ2-O)8(μ2-OH)8(3-apz)4]2·26H2O (1, 3-Hapz = 3-aminopyrazole), K8[Mo8O8(μ2-O)8(μ2-OH)8(3-apz)4]2·7H2O (2) and (NH4)4[Mo8O8(μ2-O)8(μ2-OH)4(3-apz)8]·20.5H2O (3), have been successfully synthesized by a hydrothermal method and fully characterized. X-ray structural analyses show that microporous materials 1-3 contain round pores formed by octanuclear molybdenum-oxygen groups connected sequentially with pore sizes of 4.0, 4.0, and 4.8 Å, respectively. Both 1 and 2 are composed of two {Mo8} rings, which are connected by strong intramolecular hydrogen bonds between bridging hydroxy groups and oxygen atoms to form dimeric structures. The central pores in 1 and 2 are occupied by Na+ and K+, respectively, while they are empty in 3. This reflects the structural expansion and contraction effects induced by different cations. Through intermolecular stacking, 1-3 also exhibit channels with sizes of 14.0 × 6.4, 4.6 × 2.6, and 5.4 × 5.4 Å, respectively, which were used for the studies of gas adsorption. The results show that 1-3 can selectively adsorb CO2 and O2, including the empty hole in 3, while they show little or no affinity for gases H2, N2, and CH4. Moreover, an additional polyoxomolybdenum-based species (Mo8O26)n·4n(3-H2apz) (4) has been obtained with protonated 3-aminopyrazole in the absence of a reducing agent, which can serve as an intermediate for the polyoxomolybdenum-based porous products.
Collapse
Affiliation(s)
- Ru-Dan Dai
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhen-Lang Xie
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Cheng Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dong Xin
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhao-Hui Zhou
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|