1
|
Shimada N, Hirata M, Koshizuka M, Ohse N, Kaito R, Makino K. Diboronic Acid Anhydrides as Effective Catalysts for the Hydroxy-Directed Dehydrative Amidation of Carboxylic Acids. Org Lett 2019; 21:4303-4308. [PMID: 31120259 DOI: 10.1021/acs.orglett.9b01484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The direct catalytic dehydrative amidation of β-hydroxycarboxylic acids with amines is described. A biphenyl-based diboronic acid anhydride with a B-O-B skeleton is shown to be an exceptionally effective catalyst for the reaction, providing β-hydroxycarboxylic amides in high to excellent yields with a low catalyst loading (minimum of 0.01 mol %, TON up to 7,500). This hydroxy-directed amidation shows excellent chemoselectivity and is applicable to gram-scale drug synthesis.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Mai Hirata
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Naoki Ohse
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Ryoto Kaito
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| |
Collapse
|
2
|
Zhang XT, Chen HT, Liu GZ, Li B, Liu XZ. Assembly of one novel coordination polymer built from rigid tricarboxylate ligand and bis(imidazole) linker: Synthesis, structure, and fluorescence sensing property. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Banerjee S, Soldevila-Barreda JJ, Wolny JA, Wootton CA, Habtemariam A, Romero-Canelón I, Chen F, Clarkson GJ, Prokes I, Song L, O'Connor PB, Schünemann V, Sadler PJ. New activation mechanism for half-sandwich organometallic anticancer complexes. Chem Sci 2018; 9:3177-3185. [PMID: 29732100 PMCID: PMC5916112 DOI: 10.1039/c7sc05058e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/18/2018] [Indexed: 01/12/2023] Open
Abstract
The Cp x C-H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cp x )Rh(N,N')Cl]+, where Cp x = Cp*, phenyl or biphenyl-Me4Cp, and N,N' = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh-hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular 'twisters'. The calculations reveal the crucial role of pπ orbitals of N,N'-chelated ligands in stabilizing deprotonated Cp x ligands, and also the accessibility of RhI-fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-l-Glu-l-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI-fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI-fulvene intermediates by Diels-Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels-Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | | | - Juliusz A Wolny
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Christopher A Wootton
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Feng Chen
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Ivan Prokes
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Lijiang Song
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter B O'Connor
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Volker Schünemann
- Department of Physics , University of Kaiserslautern , Erwin-Schrödinger-Straße 46 , 67663 Kaiserslautern , Germany
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|
4
|
Michaelos TK, Shopov DY, Sinha SB, Sharninghausen LS, Fisher KJ, Lant HMC, Crabtree RH, Brudvig GW. A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Acc Chem Res 2017; 50:952-959. [PMID: 28272869 DOI: 10.1021/acs.accounts.6b00652] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-μ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [IrIII/IV(pyalk)3] and [IrIII/IV(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2IrIV-O-IrIVCl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.
Collapse
Affiliation(s)
- Thoe K. Michaelos
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Dimitar Y. Shopov
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Shashi Bhushan Sinha
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Liam S. Sharninghausen
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Katherine J. Fisher
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Hannah M. C. Lant
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|