1
|
Gishan M, Middya P, Drew MGB, Frontera A, Chattopadhyay S. Synthesis, structural characterization, and theoretical analysis of novel zinc(ii) schiff base complexes with halogen and hydrogen bonding interactions. RSC Adv 2024; 14:30896-30911. [PMID: 39346528 PMCID: PMC11430572 DOI: 10.1039/d4ra06217e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
In this article, we present the synthesis and characterization of three zinc(ii) complexes, [ZnII(HL1)2] (1), [ZnII(HL2)2]·2H2O (2) and [ZnII(HL3)2] (3), with three tridentate Schiff base ligands, H2L1, H2L2, and H2L3. The structures of the complexes were confirmed by single-crystal X-ray diffraction analysis. DFT calculations were performed to gain insights into the self-assembly of the complexes in their solid-state structures. Complex 1 exhibits dual halogen-bonding interactions (Br⋯Br and Br⋯O) in its solid-state structure, which have been thoroughly investigated through molecular electrostatic potential (MEP) surface calculations, alongside QTAIM and NCIPlot analyses. Furthermore, complex 2 features a fascinating hydrogen-bonding network involving lattice water molecules, which serves to link the [ZnII(HL2)2] units into a one-dimensional supramolecular polymer. This network has been meticulously examined using QTAIM and NCIplot analyses, allowing for an estimation of the hydrogen bond strengths. The significance of H-bonds and CH⋯π interactions in complex 3 was investigated, as these interactions are crucial for the formation of infinite 1D chains in the solid state.
Collapse
Affiliation(s)
- Md Gishan
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Puspendu Middya
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Michael G B Drew
- School of Chemistry, The University of Reading P.O. Box 224, Whiteknights Reading RG6 6AD UK
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | | |
Collapse
|
2
|
Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character.
Collapse
|
3
|
Oliveri IP, Consiglio G, Munzi G, Failla S, Di Bella S. Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex. Dalton Trans 2022; 51:11859-11867. [PMID: 35876090 DOI: 10.1039/d2dt01448c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reports the synthesis and the deaggregation properties of a Lewis acidic Zn(II) salen-type Schiff-base complex derivative from diaminomaleonitrile and a systematic detailed study of its transmetalation with other metal ions in solution. In a solution of non-coordinating solvents, the complex is in a dimeric form, while in coordinating solvents or upon addition of a Lewis base it is stabilized as monomeric adducts. Experiments done in two solvents with different Lewis basicities indicate a major role of the stability of the starting adduct in transmetalation. Thus, using nitrate or perchlorate salts, acetonitrile solutions of the complex give an immediate and complete transmetalation with Cu2+, while with Co2+ and Ni2+ a much slower transmetalation rate is observed. Instead, using chloride salts a fast and complete transmetalation is observed for divalent ions of the first transition series (Mn2+, Fe2+, Co2+, Ni2+, Cu2+), indicating the role of the chloride in stabilizing the transition state of the transmetalation. On the other hand, DMF solutions of the complex are less prone to transmetalation, according with the greater basicity of the solvent and, hence, the greater stability of the related adducts with the complex. Therefore, the nature of the solvent and the counteranion allow controlling the transmetalation process of this Zn(II) Schiff-base complex.
Collapse
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
4
|
Ma W, Cheng T, Liu FZ, Liu Y, Yan K. Allosteric Binding-Induced Intramolecular Mechanical-Strain Engineering. Angew Chem Int Ed Engl 2022; 61:e202202213. [PMID: 35212101 DOI: 10.1002/anie.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Recently, polymer mechanochemistry has attracted much scientific interest due to its potential to develop degradable polymers. When the two ends of a polymer chain experience a linear pulling stress, molecular strain builds up, at sufficiently strong force, a bond scission of the weakest covalent bond results. In contrast, bond-breaking events triggered by conformational stress are much less explored. Here, we discovered that a Zn salen complex would undergo conformational switching upon allosteric complexation with alkanediammonium guests. By controlling the guest chain length, the torsional strain experienced by Zn complex can be modulated to induce bond cleavage with chemical stimulus, and reactivity trend is predicted by conformational analysis derived by DFT calculation. Such strain-release reactivity by a Zn(salen) complex initiated by guest binding is reminiscent of conformation-induced reactivity of enzymes to enable chemical events that are otherwise inhibited.
Collapse
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
5
|
Ma W, Cheng T, Liu F, Liu Y, Yan K. Allosteric Binding‐Induced Intramolecular Mechanical‐Strain Engineering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Cheng
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
6
|
Observation of a 3-in-1 Russian-doll-like Complex in Solution. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Di Bella S. Lewis acidic zinc(II) salen-type Schiff-base complexes: sensing properties and responsive nanostructures. Dalton Trans 2021; 50:6050-6063. [PMID: 33876173 DOI: 10.1039/d1dt00949d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and sensing properties, both of them related to the Lewis acidic character of the ZnII centre in these molecular species, providing an interpretation of these features. The sensing properties of Zn(salen)-type complexes mainly originate from optical spectroscopic changes associated with the formation of the adducts upon addition of a Lewis base (analyte), either by deaggregation of dimeric species or displacement of the solvent coordinated to the metal centre. In both cases the direct sensing is related either to the Lewis acidic character of the complex as well as to the Lewis basicity of the analyte. The formation of responsive nanostructures with fluorescent, and/or vapochromic, mechanochromic, and thermochromic characteristics is driven by non-mutual intermolecular ZnO interactions, further stabilized by π-π stacking interactions and/or interdigitation of the alkyl side groups. The Lewis acidic character is not a prerogative of Zn(salen)-type complexes of tetradentate Schiff-bases. Many other classes of ZnII complexes can possess this property. A correct interpretation of their chemistry is certainly useful for further development of these classical coordination compounds as new molecular materials.
Collapse
Affiliation(s)
- Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
8
|
Consiglio G, Oliveri IP, Cacciola S, Maccarrone G, Failla S, Di Bella S. Dinuclear zinc(ii) salen-type Schiff-base complexes as molecular tweezers. Dalton Trans 2020; 49:5121-5133. [PMID: 32219249 DOI: 10.1039/d0dt00494d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this contribution, the synthesis and the unusual aggregation/deaggregation properties in solution of two dinuclear ZnII Schiff-base complexes of tetradentate Schiff-base units, having non-conjugated spacers between each molecular unit, are reported in comparison to the mononuclear model complex. Through detailed 1H NMR, DOSY NMR, optical absorption, fluorescence emission, and multivariate analysis of optical absorption data, emerge some interesting findings. In solution of non-coordinating solvents, these Lewis acidic species are characterized as monomers stabilized by formation of intramolecular aggregates, having distinct spectroscopic properties in comparison to intermolecular aggregates derived from the mononuclear model analogue. Instead, in coordinating solvents they exhibit a typical behaviour, with formation of stable adducts showing a strong fluorescence. Deaggregation studies using pyridine as reference Lewis base allowed establishing a larger thermodynamic stability of these intramolecular aggregates, in comparison to intermolecular aggregates, even larger than that of aggregates of conjugated multinuclear complexes. The combined analysis of spectroscopic data upon deaggregation with ditopic Lewis bases unambiguously demonstrated the formation of stable 1 : 1 adducts, with higher binding constants in comparison to those related to monotopic species. Therefore, the present Lewis acidic, dinuclear complexes behave as molecular tweezers of ditopic guests having a strong Lewis basicity.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Cacciola
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Maccarrone
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
9
|
Urbani M, Torres T. A Constrained and "Inverted" [3+3] Salphen Macrocycle with an ortho-Phenylethynyl Substitution Pattern. Chemistry 2020; 26:1683-1690. [PMID: 31821617 DOI: 10.1002/chem.201904763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/01/2019] [Indexed: 01/02/2023]
Abstract
A [3+3] Schiff-base salphen macrocycle (7 a) was synthesized by imine condensation between ortho-phenylenediamine and ortho-phenylethynyl-bridged bis(5-salicylaldehyde) precursors. The triangular-shaped macrocycle 7 a has a nonclassical (or "inverted") design in which the N2 O2 coordination pockets are located at the sides instead of the corners. Compound 7 a could be synthesized in a reasonably good yield (64 %) considering the steric constraints imposed by the ortho substitution pattern. Subsequent zinc metalation afforded the corresponding Zn metallomacrocycle 7 b. Spectroscopic experiments evidenced weak (7 a) to strong (7 b) self-aggregation behavior in solution. Their ability to self-organize at the supramolecular level was further studied in the solid state by AFM and TEM, which revealed the formation of large bundles of fibers with lengths of several micrometers and widths of nanometers.
Collapse
Affiliation(s)
- Maxence Urbani
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomas Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
10
|
Laube C, Taut JA, Kretzschmar J, Zahn S, Knolle W, Ullman S, Kahnt A, Kersting B, Abel B. Light controlled oxidation by supramolecular Zn( ii) Schiff-base complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of Schiff-base ligands for the controlled zinc ion induced formation of electronic triplet states and the initialisation of photoreactivity.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Department of Chemistry
| | - Josef Anton Taut
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Jonas Kretzschmar
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Stefan Zahn
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Wolfgang Knolle
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Steve Ullman
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Axel Kahnt
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Bernd Abel
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institute of Physical und Theoretical Chemistry
| |
Collapse
|
11
|
Relaxation of Kohn–Sham orbitals of organometallic complexes during the approach of a nucleophilic reactant (or an electron approach): the case of [sal(ph)en]2 Zn complexes. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2511-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Consiglio G, Oliveri IP, Failla S, Di Bella S. On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands. Molecules 2019; 24:E2514. [PMID: 31324053 PMCID: PMC6651702 DOI: 10.3390/molecules24132514] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
The zinc(II) ion forms stable complexes with a wide variety of ligands, but those related to Schiff-bases are among the most largely investigated. This review deals with the peculiar aggregation characteristics of Zn(II) Schiff-base complexes from tetradentate N2O2 salen-type ligands, L, derivatives from salicylaldehydes and 1,2-diamines, and is mostly focused on their spectroscopic properties in solution. Thanks to their Lewis acidic character, ZnL complexes show interesting structural, nanostructural, and aggregation/deaggregation properties in relation to the absence/presence of a Lewis base. Deaggregation of these complexes is accompanied by relevant changes of their spectroscopic properties that can appropriately be exploited for sensing Lewis bases. Thus, ZnL complexes have been investigated as chromogenic and fluorogenic chemosensors of charged and neutral Lewis bases, including cell imaging, and have shown to be selective and sensitive to the Lewis basicity of the involved species. From these studies emerges that these popular, Lewis acidic bis(salicylaldiminato)Zn(II) Schiff-base complexes represent classical coordination compounds for modern applications.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
13
|
Bocian A, Brykczyńska D, Kubicki M, Hnatejko Z, Wałęsa-Chorab M, Gorczyński A, Patroniak V. Complexation behavior of 6,6″-dimethyl-2,2′:6′,2″-terpyridine ligand with Co(II), Au(III), Ag(I), Zn(II) and Cd(II) ions: Synthesis, spectroscopic characterization and unusual structural motifs. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Lamine W, Boughdiri S, Christ L, Morell C, Chermette H. Coordination chemistry of Zn
2+
with Sal(ph)en ligands: Tetrahedral coordination or penta‐coordination? a DFT analysis. J Comput Chem 2018. [DOI: 10.1002/jcc.25755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Walid Lamine
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
- Université de Tunis El ManarFaculté des Sciences de Tunis, UR11ES19 Unité de recherche Physico‐Chimie des Matériaux Condensés El‐Manar II, 2092, Tunis Tunisia
| | - Salima Boughdiri
- Université de Tunis El ManarFaculté des Sciences de Tunis, UR11ES19 Unité de recherche Physico‐Chimie des Matériaux Condensés El‐Manar II, 2092, Tunis Tunisia
| | - Lorraine Christ
- Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de LyonIRCELYON, UMR CNRS 5256, Université Lyon 1 69626, Villeurbanne Cedex France
| | - Christophe Morell
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
| | - Henry Chermette
- Université de Lyon, Institut des Sciences AnalytiquesUMR CNRS 5280, Université Claude Bernard Lyon 1 ENS‐Lyon, 69622, Villeurbanne Cedex France
| |
Collapse
|
15
|
|
16
|
Supramolecular Aggregation of a New Substituted Bis(salicylaldiminato)zinc(II) Schiff-Base Complex Derived from trans-1,2-Diaminocyclohexane. INORGANICS 2018. [DOI: 10.3390/inorganics6010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this contribution is reported the synthesis, characterization, and aggregation properties in solution of a novel Zn(II) complex, (R)-2, derived from the enantiopure chiral trans-1,2-diaminocyclohexane and a substituted salicylaldehyde. Detailed 1H NMR, DOSY NMR, optical absorption, and circular dichroism spectroscopic studies and chemical evidence allowed to investigate the nature of aggregate species in solution. The high solubility of (R)-2 in solution of the non-coordinating chloroform solvent leads to formation of various aggregates, some of them consisting of large oligomers estimated to contain up to 27 monomeric units. The chiral trans-stereochemistry of the bridging diamine favors a different aggregation mode in these complexes, both in the oligomers and dimers, involving a tetrahedral coordination geometry around the metal center. Overall data suggest the formation of helical oligomers, (ZnL)n, in freshly prepared chloroform solutions which, by standing or heating, evolve towards a more thermodynamically stable, dinuclear double-helicate Zn2L2 dimer.
Collapse
|
17
|
Coimbra JTS, Brás NF, Fernandes PA, Rangel M, Ramos MJ. Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(ii) complexes revealed by molecular dynamics simulations. RSC Adv 2018; 8:27081-27090. [PMID: 35539964 PMCID: PMC9083369 DOI: 10.1039/c8ra03602k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
The class of 3-hydroxy-4-pyridinone ligands is widely known and valuable for biomedical and pharmaceutical purposes. Their chelating properties towards biologically-relevant transition metal ions highlight their potential biomedical utility. A set of 3-hydroxy-4-pyridinone Zn(ii) complexes at different concentrations was studied for their ability to interact with lipid phases. We employed umbrella sampling simulations to attain the potential-of-mean force for a set of ligands and one Zn(ii) complex, as these permeated a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) hydrated bilayer system. In addition, we used conventional molecular dynamics simulations to study the behavior of various Zn(ii) complexes in hydrated bilayer systems. This work discusses: (i) the partition of 3-hydroxy-4-pyridinone ligands to bilayer phases; (ii) self-aggregation in crowded environments of Zn(ii) complexes; and (iii) possible mechanisms for the membrane translocation of Zn(ii) complexes. We observed distinct interactions for the studied complexes, and distinct membrane partition coefficients (Kmem) depending on the considered ligand. The more hydrophobic ligand, 1-hexyl-3-hydroxy-2-methyl-4(1H)-pyridinone, partitioned more favorably to lipid phases (at least two orders of magnitude higher Kmem when compared to the other ligands), and the corresponding Zn(ii) complex was also prone to self-aggregation when an increased concentration of the complex was employed. We also observed that the inclusion of a coordinated water molecule in the parameterization of the Zn(ii) coordination sphere, as proposed in the available crystallographic structure of the complex, decreased the partition coefficient and membrane permeability for the tested complex. The membrane partition of hydroxypyridinones and of zinc complexes explored by molecular dynamics.![]()
Collapse
Affiliation(s)
- João T. S. Coimbra
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Natércia F. Brás
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria Rangel
- LAQV
- REQUIMTE
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| |
Collapse
|
18
|
Oliveri IP, Malandrino G, Mirabella S, Di Bella S. Vapochromic and chemiresistive characteristics of a nanostructured molecular material composed of a zinc(ii)-salophen complex. Dalton Trans 2018; 47:15977-15982. [PMID: 30378618 DOI: 10.1039/c8dt03904f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnII Schiff-base complex shows vapochromic and chemiresistive behaviour when exposed to vapours of a Lewis base.
Collapse
Affiliation(s)
| | | | - Salvo Mirabella
- Dipartimento di Fisica ed Astronomia
- Università di Catania
- I-95123 Catania
- Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
19
|
Oliveri IP, Forte G, Consiglio G, Failla S, Di Bella S. Aggregates of Defined Stereochemical Scaffolds: A Study in Solution of a Zinc(II) Schiff Base Complex Derived from the Enantiopure trans-1,2-Cyclopentanediamine. Inorg Chem 2017; 56:14206-14213. [DOI: 10.1021/acs.inorgchem.7b02341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Giuseppe Forte
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| |
Collapse
|
20
|
Cao Y, Liu H, Yuan Z, Wei G. Two New Oxovanadium(IV) Compounds Containing Amino Acid Schiff Base and 1,10-Bathophenanthroline Ligands: Syntheses, Crystal Structures, and In Vitro Evaluation of the Anticancer Activities. Aust J Chem 2017. [DOI: 10.1071/ch16538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two new oxovanadium(iv) compounds containing 1,10-bathophenanthroline (Bphen) and amino Schiff base derivatives [VO(hnd-napha)(Bphen)] (1) and [VO(o-van-met)(Bphen)] (2) were synthesised (where hnd-napha and o-van-met are N-Schiff bases derived from the reaction of 2-hydroxy-1-naphthaldehyde with 3-(1-naphthyl)-l-alanine and o-vanillin with l-methionine, respectively). These compounds were characterised by elemental analysis, infrared spectroscopy, high-resolution mass spectrometry, and single-crystal X-ray diffraction (XRD). Both compounds showed low molar conductance values, indicating that they are non-electrolytes. The XRD results showed that the VIV atoms in both compounds existed in the VO3N3 coordination geometry with Schiff base and Bphen ligands. The in vitro anticancer activities of compounds 1 and 2 were evaluated against A549 human lung carcinoma and HepG2 human hepatoma cell lines using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the results revealed that both compounds were cytotoxic with half maximal inhibitory concentration (IC50) values in the range of 8.22 ± 1.0 to 94.89 ± 3.2 μmol L−1. Notably, compound 2 exhibited much better anticancer activity in vitro against A549 cells (8.22 ± 1 μmol L−1) than [VO(acac)2] (24 ± 6 μmol L−1) or any of our previously reported oxovanadium(iv) compounds, making it comparable in activity to cisplatin (3.1 ± 0.5 μmol L−1). These results therefore suggest that compound 2 could be used as a promising lead for the development of anticancer agents for the treatment of lung cancer.
Collapse
|
21
|
Oliveri IP, Di Bella S. Lewis basicity of relevant monoanions in a non-protogenic organic solvent using a zinc(ii) Schiff-base complex as a reference Lewis acid. Dalton Trans 2017; 46:11608-11614. [PMID: 28825067 DOI: 10.1039/c7dt02821k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Lewis basicity of relevant anions is reported for the first time and compared with that of neutral bases.
Collapse
Affiliation(s)
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
22
|
Forte G, Oliveri IP, Consiglio G, Failla S, Di Bella S. On the Lewis acidic character of bis(salicylaldiminato)zinc(ii) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diimine. Dalton Trans 2017; 46:4571-4581. [DOI: 10.1039/c7dt00574a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The electronic effects induced by the geometry of the 1,2-diimine bridge control the Lewis acidic character in a series of ZnII Shiff-base complexes.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Scienze del Farmaco
- Università di Catania
- I-95125 Catania
- Italy
| | | | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
23
|
Dong YW, Fan RQ, Chen W, Zhang HJ, Song Y, Du X, Wang P, Wei LG, Yang YL. Different conjugated system Zn(ii) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials. Dalton Trans 2017; 46:1266-1276. [DOI: 10.1039/c6dt04159k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Five Zn(ii) complexes with different conjugated systems were synthesized. Zn3 was incorporated into PMMA, creating a high performance material.
Collapse
Affiliation(s)
- Yu-Wei Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Rui-Qing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Wei Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Hui-Jie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Yang Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Xi Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Li-Guo Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Yu-Lin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| |
Collapse
|