1
|
Jennifer G A, Schreckenbach G, Varathan E. Actinide(II) Dioxo Stabilization in the Dipyriamethyrin Ligand Environment: A DFT Study. Inorg Chem 2025; 64:6476-6487. [PMID: 40119800 DOI: 10.1021/acs.inorgchem.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
This study aims to understand the properties of mid- to late-actinide dioxo cations, [AnII(η1-3O2)]2+ (An = Am-Lr) in their +II oxidation state and their interaction with the dipyriamethyrin ligand. The DFT calculations of the total binding energies of the complex isomers with 7 and 8 coordination to the actinide point to the latter as relatively more stable. In the complexes, Am, Cm, and Lr shift to a more stable +III oxidation state, Bk to Es were assigned oxidation states between +II and +III, while Fm to No retained their formal +II oxidation state. The triplet dioxygen transitioned to a doublet superoxide upon complexation, as observed from Mayer bond orders (∼1.5 for O*-O bonds) and spin density (∼0.5 on O). Based on bond lengths and bond orders, the An-N bonds show weak covalency, while the An-O* and An···O bonds exhibited stronger covalent interactions. The calculated thermodynamic parameters indicate the formation of [An(O2)L] to be spontaneous and exothermic, with [Cm(O2)L] and [Lr(O2)L] being the most thermodynamically and energetically feasible. Energy decomposition analysis quantifies more covalent character in the former than the latter. Conversely, [No(O2)L] is the least stable due to the reduced availability of 6d and 7s orbitals for bonding.
Collapse
Affiliation(s)
- Abigail Jennifer G
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu India
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
2
|
Dutra FR, Vasiliu M, Gomez AN, Xia D, Dixon DA. Prediction of Redox Potentials for U, Np, Pu, and Am in Aqueous Solution. J Phys Chem A 2024; 128:5612-5626. [PMID: 38959054 DOI: 10.1021/acs.jpca.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The redox properties of the actinides in aqueous solution are important for fuel production/reprocessing and understanding the environmental impact of nuclear waste. The redox potentials for U, Np, Pu, and Am in oxidation states from 0 up to VII (as appropriate) in aqueous solutions have been predicted at the density functional theory level with the B3LYP functional, Stuttgart small core pseudopotential basis sets for the actinides, and explicit (30H2O molecules)/implicit treatment of the aqueous solvent using the self-consistent reaction field COSMO and SMD approaches for the implicit solvation. The predictions of the structural parameters of clusters incorporating first and second solvation shells are consistent with the available experimental data. Our results are typically within 0.2 V of the available experimental data using two explicit solvation shells with an implicit solvent model. The use of the PW91 functional substantially improved the prediction of the Pu(VI/V) redox couple. The redox couples for An(VI/IV) and An(V/IV) which involve the addition of protons and removal of the actinyl oxygens led to slightly larger differences from an experiment. The An(IV/0) and An(III/0) couples were reliably predicted with our approach. Predictions of the unknown An(II/I) redox potentials were negative, consistent with expectations, and predictions for unknown An(VII/VI), An(III/II), and An(II/0) redox couples improve prior estimates.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Amber N Gomez
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Donna Xia
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
3
|
Kravchuk DV, Augustine LJ, Rajapaksha H, Benthin GC, Batista ER, Yang P, Forbes TZ. Insights into the Mechanism of Neptunium Oxidation to the Heptavalent State. Chemistry 2024; 30:e202304049. [PMID: 38183632 DOI: 10.1002/chem.202304049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Neptunium can exist in multiple oxidation states, including the rare and poorly understood heptavalent form. In this work, we monitored the formation of heptavalent neptunium [Np(VII)O4(OH)2]3- during ozonolysis of aqueous MOH (M=Li, Na, K) solutions using a combined experimental and theoretical approach. All experimental reactions were closely monitored via absorption and vibrational spectroscopy to follow both the oxidation state and the speciation of neptunium guided by the calculated vibrational frequencies for various neptunium species. The mechanism of the reaction partly involves oxidative dissolution of transient Np(VI) oxide/hydroxide solid phases, the identity of which are dependent on the co-precipitating counter-cation Li+/Na+/K+. Additional calculations suggest that the most favorable energetic pathway occurs through the reaction of a [Np(V)O2(OH)4]3- with the hydroxide radical to form [Np(VI)O2(OH)4]2-, followed by an additional oxidation with HO⋅ to create [Np(VII)O4(OH)2]3-.
Collapse
Affiliation(s)
- Dmytro V Kravchuk
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Logan J Augustine
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Harindu Rajapaksha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Grant C Benthin
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
4
|
Jennifer G A, Gao Y, Schreckenbach G, Varathan E. Periodic Trends in the Stabilization of Actinyls in Their Higher Oxidation States Using Pyrrophen Ligands. Inorg Chem 2023; 62:6920-6933. [PMID: 37104857 DOI: 10.1021/acs.inorgchem.3c00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the prominent existence and unique chemistry of actinyls, their complexation with suitable ligands is of significant interest. The complexation of high-valent actinyl moieties (An = U, Np, Pu and Am) with the acyclic sal-porphyrin analogue called "pyrrophen" (L(1)) and its dimethyl derivative (L(2)) with four nitrogen and two oxygen donor atoms was studied using relativistic density functional theory. Based on the periodic trends, the [UVO2-L(1)/L(2)]1- complexes show shorter bond lengths and higher bond orders that increase across the series of pentavalent actinyl complexes mainly due to the localization of the 5f orbitals. Among the hexavalent complexes, the [UVIO2-L(1)/L(2)] complexes have the shortest bonds. Following the uranyl complex, due to the plutonium turn, the [AmVIO2-L(1)/L(2)] complexes exhibit comparable properties with those of the former. Charge analysis suggests the complexation to be facilitated through ligand-to-metal charge transfer (LMCT) mainly through σ donation. Thermodynamic feasibility of complexation was modeled using hydrated actinyl moieties in aqueous medium and was found to be spontaneous. The dimethylated pyrrophen (L(2)) shows higher magnitudes of thermodynamic parameters indicating increased feasibility compared to the unsubstituted ligand (L(1)). Energy decomposition analysis (EDA) along with extended transition-state-natural orbitals for chemical valence theory (ETS-NOCV) analysis shows that the dominant electrostatic contributions decrease across the series and are counteracted by Pauli repulsion. Slight but considerable covalency is provided to hexavalent actinyl complexes by orbital contributions; this was confirmed by molecular orbital (MO) analysis that suggests strong covalency in americyl (VI) complexes. In addition to the pentavalent and hexavalent actinyl moieties, heptavalent actinyl species of neptunyl, plutonyl, and americyl were studied. Beyond the influence of the charges, the geometric and electronic properties point to the stabilization of neptunyl (VII) in the pyrrophen ligand environment, while the others shift to a lower (+VI) and relatively stable OS on complexation.
Collapse
Affiliation(s)
- Abigail Jennifer G
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
5
|
Hu SX, You XX, Zou WL, Lu E, Gao X, Zhang P. Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An 2O 6] 2+ and [(An 2O 6)(12-crown-4 ether) 2] 2+ (An = U, Np, and Pu). Inorg Chem 2022; 61:15589-15599. [DOI: 10.1021/acs.inorgchem.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Xiao-Xia You
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi’an, 710127, China
| | - Erli Lu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Xiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
6
|
Xu ZF, Zhang WJ, Zhang P, Hu SX. Unprecedented neptunyl(V) cation-directed structural variations in Np 2O x compounds. NANOSCALE 2021; 13:15590-15597. [PMID: 34528990 DOI: 10.1039/d1nr03408a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies on transuranic oxides provide a particularly valuable insight into chemical bonding in actinide compounds, in which subtle differences between metal ions and oxygen atoms are of fundamental importance for the stability of these compounds as well as their existence. In the case of neptunium, it is still mainly limited to specific Np oxide compounds without periodicity in the formation of stable structures or different oxidation states. Here, we report a systematic global minimum search of Np2Ox (x = 1-7) clusters and the computational study of their electronic structures and chemical bonding. These studies suggest that Np(V) ion could play the structure-directing role, and thus the mixed-valent Np(III/V) in Np2O4 is predicted accessible. In comparison with lower oxidation state Np analogues, significant 5f-orbital covalent interactions with Np(V)O bonding are observed, which shows that these model neptunium oxides can provide new understandings into the behavior of 5f-electrons in chemical bonding and structural design.
Collapse
Affiliation(s)
- Zhong-Fei Xu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Wen-Jing Zhang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| |
Collapse
|
7
|
Renault E, Jian J, Maurice R, van Stipdonk MJ, Tatosian IJ, Bubas AR, Martens J, Berden G, Oomens J, Gibson JK. Characterization of Uranyl Coordinated by Equatorial Oxygen: Oxo in UO 3 versus Oxyl in UO 3. J Phys Chem A 2021; 125:5544-5555. [PMID: 34138571 DOI: 10.1021/acs.jpca.1c03818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Uranium trioxide, UO3, has a T-shaped structure with bent uranyl, UO22+, coordinated by an equatorial oxo, O2-. The structure of cation UO3+ is similar but with an equatorial oxyl, O•-. Neutral and cationic uranium trioxide coordinated by nitrates were characterized by collision induced dissociation (CID), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory. CID of uranyl nitrate, [UO2(NO3)3]- (complex A1), eliminates NO2 to produce nitrate-coordinated UO3+, [UO2(O•)(NO3)2]- (B1), which ejects NO3 to yield UO3 in [UO2(O)(NO3)]- (C1). Finally, C1 associates with H2O to afford uranyl hydroxide in [UO2(OH)2(NO3)]- (D1). IRMPD of B1, C1, and D1 confirms uranyl equatorially coordinated by nitrate(s) along with the following ligands: (B1) radical oxyl O•-; (C1) oxo O2-; and (D1) two hydroxyls, OH-. As the nitrates are bidentate, the equatorial coordination is six in A1, five in B1, four in D1, and three in C1. Ligand congestion in low-coordinate C1 suggests orbital-directed bonding. Hydrolysis of the equatorial oxo in C1 epitomizes the inverse trans influence in UO3, which is uranyl with inert axial oxos and a reactive equatorial oxo. The uranyl ν3 IR frequencies indicate the following donor ordering: O2-[best donor] ≫ O•-> OH-> NO3-.
Collapse
Affiliation(s)
- Eric Renault
- CEISAM UMR 6230, CNRS, Université de Nantes, F-44000 Nantes, France
| | - Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jonathan Martens
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands.,van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Maurice R, Dau PD, Hodée M, Renault E, Gibson JK. Controlling Cation‐Cation Interactions in Uranyl Coordination Dimers by Varying the Length of the Dicarboxylate Linker. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457 IN2P3/IMT Atlantique/Université de Nantes 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Phuong D. Dau
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| | | | | | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| |
Collapse
|
9
|
Abstract
AbstractThe past decade has been very productive in the field of actinide (An) oxides containing high-valent An. Novel gas-phase experimental and an impressive number of theoretical studies have been performed, mostly on pure oxides or oxides extended with other ligands. The review covers the structural properties of molecular An oxides with high (An≥V) oxidation states. The presented compounds include the actinide dioxide cations [AnO2]+ and [AnO2]2+, neutral and ionic AnOx (x = 3–6), oxides with more than one An atom like neutral dimers, trimers and dimers from cation–cation interactions, as well as large U-oxide clusters observed very recently in the gaseous phase.
Collapse
|
10
|
Vallet V, Gong Y, Saab M, Réal F, Gibson JK. Carbon–sulfur bond strength in methanesulfinate and benzenesulfinate ligands directs decomposition of Np(v) and Pu(v) coordination complexes. Dalton Trans 2020; 49:3293-3303. [DOI: 10.1039/d0dt00125b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adjusting intra-ligand bond strengths in actinide sulfinate complexes directs towards alternative cleavage of carbon–sulfur or actinide–sulfinate bonds.
Collapse
Affiliation(s)
- Valérie Vallet
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - Yu Gong
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Mohamad Saab
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - Florent Réal
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
11
|
George K, Muller J, Berthon L, Berthon C, Guillaumont D, Vitorica-Yrezabal IJ, Stafford HV, Natrajan LS, Tamain C. Exploring the Coordination of Plutonium and Mixed Plutonyl-Uranyl Complexes of Imidodiphosphinates. Inorg Chem 2019; 58:6904-6917. [PMID: 31025862 DOI: 10.1021/acs.inorgchem.9b00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of plutonium(IV) and plutonium(VI) with the complexing agents tetraphenyl and tetra-isopropyl imidodiphosphinate (TPIP- and TIPIP-) is reported. Treatment of sodium tetraphenylimidodiphosphinate (NaTPIP) and its related counterpart with peripheral isopropyl groups (NaTIPIP) with [NBu4]2[PuIV(NO3)6] yields the respective PuIV complexes [Pu(TPIP)3(NO3)] and [Pu(TIPIP)2(NO3)2] + [PuIV(TIPIP)3(NO3)]. Similarly, the reactions of NaTPIP and NaTIPIP with a Pu(VI) nitrate solution lead to the formation of [PuO2(HTIPIP)2(H2O)][NO3]2, which incorporates a protonated bidentate TIPIP- ligand, and [PuO2(TPIP)(HTPIP)(NO3)], where the protonated HTPIP ligand is bound in a monodentate fashion. Finally, a mixed U(VI)/Pu(VI) compound, [(UO2/PuO2)(TPIP)(HTPIP)(NO3)], is reported. All these actinyl complexes remain in the +VI oxidation state in solution over several weeks. The resultant complexes have been characterized using a combination of X-ray structural studies, NMR, optical, vibrational spectroscopies, and electrospray ionization mass spectrometry. The influence of the R-group (R = phenyl or iPr) on the nature of the complex is discussed with the help of DFT studies.
Collapse
Affiliation(s)
- Kathryn George
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Julie Muller
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Laurence Berthon
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Claude Berthon
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Dominique Guillaumont
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| | - Iñigo J Vitorica-Yrezabal
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - H Victoria Stafford
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Louise S Natrajan
- The Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Christelle Tamain
- Nuclear Energy Division, RadioChemistry & Processes Department , CEA , Bagnols-sur-Cèze F-30207 , France
| |
Collapse
|
12
|
Kovács A. Relativistic Multireference Quantum Chemical Study of the Electronic Structure of Actinide Trioxide Molecules. J Phys Chem A 2017; 121:2523-2530. [DOI: 10.1021/acs.jpca.7b01344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Attila Kovács
- European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe, Germany
| |
Collapse
|