1
|
Saha S, Diyali N, Diyali S, Panda SJ, Das M, Acharya S, Mudi PK, Singh M, Ray PP, Purohit CS, Biswas B. Decrypting the hydrogen evolution in alkaline water with novel magnetoactive cobalt(II) complex-driven cobalt oxide electrocatalysts. Dalton Trans 2024; 53:13805-13814. [PMID: 39109402 DOI: 10.1039/d4dt01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Under the gravity of future socio-economic development, the viability of water electrolysis still hinges on the accessibility of stable earth-abundant electrocatalysts and net energy efficiency. This work emphasizes the design and synthesis of two newly developed cobalt(II) complexes, [Co(HL)2(NCS)2] (Comono) and [Co2(L)3(CH3OH)]ClO4 (Codi), with a (N,O)-donor ligand, HL (2-methoxy-6-(((2-methoxyphenyl)imino)methyl)phenol). The study delves into understanding their structural, morphological, magnetic, and charge transport characteristics. Moreover, the study explores the potential of these complexes in catalyzing hydrogen production through heterogeneous electrocatalysis. The X-ray crystal structure of Comono reveals the octahedral geometry of the Co(II) ion, adopting two HL units and two NCS- units. The Codi complex exhibits a doubly-phenoxo-O-bridged (μ1,1) dinuclear complex, forming a typical octahedral geometry for both the Co(II) centres in coupling with three units of L-. Temperature-dependent magnetic susceptibility measurements showed that all of the Co(II) ion in Comono shows a typical paramagnetic behaviour for high spin octahedral Co(II) ions while the Co(II) centres in Codi are coupled with doubly-phenoxo-bridges bearing weak ferromagnetic characteristics at low temperature. Electron transport properties of the Co(II) complex-mediated Schottky device address the superior carrier mobility (μ) for Codi (9.21 × 10-5) over Comono (2.02 × 10-5 m2 v-1 s-1) with respective transit times of 1.70 × 10-9 and 7.77 × 10-9 s. Additionally, electron impedance spectral analysis supports the lower electrical transport resistance of Codi relative to Comono. The heterogeneous electrocatalytic HER activity of Codi and Comono in 0.1 M KOH shows excellent electrocatalytic efficiency in terms of the various electrochemical parameters. Constant potential electrolysis, multi-cycle CVs, and post-HER analysis reveal the pre-catalytic nature of the complexes, which in turn delivers Co3O4 nanoparticles as the active catalysts for efficient hydrogen evolution.
Collapse
Affiliation(s)
- Subhajit Saha
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Nilankar Diyali
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Sangharaj Diyali
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Subhra Jyoti Panda
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
| | - Mainak Das
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Sobhna Acharya
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali 140306, India
| | | | - Monika Singh
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali 140306, India
| | | | - Chandra Shekhar Purohit
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| |
Collapse
|
2
|
Montenegro-Pohlhammer N, Cárdenas-Jirón G, Calzado CJ. Voltage-induced modulation of the magnetic exchange in binuclear Fe(III) complex deposited on Au(111) surface. Dalton Trans 2024; 53:6264-6274. [PMID: 38506048 DOI: 10.1039/d4dt00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We present a complete computational study devoted to the deposition of a magnetic binuclear complex on a metallic surface, aimed to obtain insight into the interaction of magnetically coupled complexes with their supporting substrates, as well as their response to external electrical stimuli applied through a surface-molecule-STM molecular junction-like architecture. Our results not only show that the deposition is favorable in two of the four studied orientations, but also, that the magnetic coupling is only slightly perturbed once the complex is adsorbed. We observe that the effects of the applied bias voltage on the magnetic coupling strongly depend on the molecule orientation with respect to the surface and the voltage polarity. Further analysis shows that this behavior is attributable to the stabilization/destabilization of the d-type singly occupied orbitals of the iron centers, reinforced by the strong local electric fields and induced charge densities only present in certain orientations of the deposited molecule and applied voltage polarity.
Collapse
Affiliation(s)
- Nicolás Montenegro-Pohlhammer
- Escuela de Ingeniería Civil, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Santiago, Chile.
- Universidad Bernardo OHiggins, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana 1702, Santiago, Chile
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile
| | - Carmen J Calzado
- Departamento de Química Física. Universidad de Sevilla, c/Prof. García González, s/n 41012, Sevilla, Spain
| |
Collapse
|
3
|
Marcinkowski D, Kubicki M, Consiglio G, Hnatejko Z, Majcher-Fitas AM, Podgajny R, Patroniak V, Gorczyński A. Unexpected structural complexity of d-block metallosupramolecular architectures within the benzimidazole-phenoxo ligand scaffold for crystal engineering aspects. Sci Rep 2023; 13:18055. [PMID: 37872235 PMCID: PMC10593740 DOI: 10.1038/s41598-023-45109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Design of metallosupramolecular materials encompassing more than one kind of supramolecular interaction can become deceptive, but it is necessary to better understand the concept of the controlled formation of supramolecular systems. Herein, we show the structural diversity of the bis-compartmental phenoxo-benzimidazole ligand H3L1 upon self-assembly with variety of d-block metal ions, accounting for factors such as: counterions, pH, solvent and reaction conditions. Solid-state and solution studies show that the parent ligand can accommodate different forms, related to (de)protonation and proton-transfer, resulting in the formation of mono-, bi- or tetrametallic architectures, which was also confirmed with control studies on the new mono-compartmental phenoxo-benzimidazole H2L2 ligand analogue. For the chosen architectures, structural variables such as porous character, magnetic behaviour or luminescence studies were studied to demonstrate how the form of H3L1 ligand affects the final form of the supramolecular architecture and observed properties. Such complex structural variations within the benzimidazole-phenoxo-type ligand have been demonstrated for the first time and this proof-of-concept can be used to integrate these principles in more sophisticated architectures in the future, combining both the benzimidazole and phenoxide subunits. Ultimately, those principles could be utilized for targeted manipulation of properties through molecular tectonics and crystal engineering aspects.
Collapse
Affiliation(s)
- Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - Zbigniew Hnatejko
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna M Majcher-Fitas
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
4
|
Shin HJ, Jang YJ, Zenno H, Hayami S, Min KS. Formation of polynuclear iron(III) complexes of N-(2-pyridylmethyl)iminodipropanol depending on pseudohalide ions: synthesis, crystal structure, and magnetic properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Thevenin L, Daran JC, Poli R, Fliedel C. Cobalt complexes of an OSNSO-tetrapodal pentadentate ligand: Synthesis, structures and reactivity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Synthesis, structure and magnetic properties of binuclear 3d-metal complexes of new 3-(2-pyridyl)-6-phenyl-1,2,4-triazine derivative. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Song XJ, Xue XM. Study on the Magneto-Structural Correlation of a New Dinuclear Cobalt(II) Complex with Double μ-Phenoxo Bridges. ACS OMEGA 2020; 5:8347-8354. [PMID: 32309745 PMCID: PMC7161063 DOI: 10.1021/acsomega.0c00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A new μ-phenoxo-bridged dinuclear cobalt(II) complex, [Co2(L)2(acac)2(H2O)] (1), has been synthesized by employing a new ligand, (4-methyl-2-formyl-6-(((2-trifluoromethyl)phenyl)methyliminomethyl) phenol) (HL). Structural analysis of complex 1 reveals that the geometry around cobalt centers is best described as a distorted octahedron and the distance of cobalt neighbors is 3.128(0) Å. The magnetic property studies indicate that complex 1 exhibits strong spin-orbit coupling effects and weak ferromagnetic coupling between two high-spin Co(II) centers linked by double μ-Ophenoxo bridges, with J = 1.87(2) cm-1. The studies show that not only the Co-O-Co angle affects the alignment of the cobalt spins but also the dihedral angle between the CoOCo plane and the phenyl plane plays an important role in the magnetic coupling in this [Co2O2] system. Thus, the small bridging angles (96.96(11) and 96.91(11)°) and the large dihedral angles between the CoOCo plane and the phenyl plane (63.0(1) and 30.6(1)°) induce intramolecular ferromagnetic exchange interaction in complex 1.
Collapse
|
8
|
Mandal S, Majumder S, Mondal S, Mohanta S. Synthesis, Crystal Structures and Magnetic Properties of Two Heterobridged µ‐Phenoxo‐µ
1,1
‐Azide/Isocyanate Dinickel(II) Compounds: Experimental and Theoretical Exploration. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuvankar Mandal
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| | - Samit Majumder
- Department of Chemistry Bhairab Ganguly College 2, Feeder Road 700056 Belghoria, Kolkata West Bengal India
| | - Suraj Mondal
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| | - Sasankasekhar Mohanta
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| |
Collapse
|
9
|
Doroshenko I, Babiak M, Buchholz A, Görls H, Plass W, Pinkas J. New molecular heptanuclear cobalt phosphonates: synthesis, structures and magnetic properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj00902c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis, structures and magnetic properties (strong anisotropy, ferromagnetic and antiferromagnetic interactions) of novel {Co7} homoleptic molecular cobalt phosphonates with a similar structure motif are described.
Collapse
Affiliation(s)
- Iaroslav Doroshenko
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Michal Babiak
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Jiri Pinkas
- Department of Chemistry
- Masaryk University
- CZ-61137 Brno
- Czech Republic
- CEITEC MU
| |
Collapse
|
10
|
Montenegro-Pohlhammer N, Páez-Hernández D, Calzado CJ, Arratia-Pérez R. A theoretical study of the super exchange mechanism and magneto-structural relationships in the [Mn(iii)2(μ-F)F4(Me3tacn)2](PF6) coordination compound. NEW J CHEM 2018. [DOI: 10.1039/c8nj02793e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed theoretical study of the electronic structure and magnetic properties of the dinuclear Mn(iii) complex, [Mn(iii)2(μ-F)F4(Me3tacn)2] (complex 1), with a single fluoride bridge is reported.
Collapse
Affiliation(s)
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics Group (ReMoPh)
- Universidad Andrés Bello
- Santiago
- Chile
| | - Carmen J. Calzado
- Departamento de Química Física
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics Group (ReMoPh)
- Universidad Andrés Bello
- Santiago
- Chile
| |
Collapse
|
11
|
Yoshitake M, Nishihashi M, Ogata Y, Yoneda K, Yamada Y, Sakiyama H, Mishima A, Ohba M, Koikawa M. Syntheses, structures, and magnetic properties of cubane-based cobalt and nickel complexes with ONO -tridentate ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|