1
|
Lentink S, Salazar Marcano DE, Moussawi MA, Vandebroek L, Van Meervelt L, Parac-Vogt TN. Fine-tuning non-covalent interactions between hybrid metal-oxo clusters and proteins. Faraday Discuss 2023; 244:21-38. [PMID: 37102318 DOI: 10.1039/d2fd00161f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between the protein Hen Egg White Lysozyme (HEWL) and three different hybrid Anderson-Evans polyoxometalate clusters - AE-NH2 (δ-[MnMo6O18{(OCH2)3CNH2}2]3-), AE-CH3 (δ-[MnMo6O18{(OCH2)3CCH3}2]3-) and AE-Biot (δ-[MnMo6O18{(OCH2)3CNHCOC9H15N2OS}2]3-) - were studied via tryptophan fluorescence spectroscopy and single crystal X-ray diffraction. Quenching of tryptophan fluorescence was observed in the presence of all three hybrid polyoxometalate clusters (HPOMs), but the extent of quenching and the binding affinity were greatly dependent on the nature of the organic groups attached to the cluster. Control experiments further revealed the synergistic effect of the anionic polyoxometalate core and organic ligands towards enhanced protein interactions. Furthermore, the protein was co-crystallised with each of the three HPOMs, resulting in four different crystal structures, thus allowing for the binding modes of HPOM-protein interactions to be investigated with near-atomic precision. All crystal structures displayed a unique mode of binding of the HPOMs to the protein, with both functionalisation and the pH of the crystallisation conditions influencing the interactions. From the crystal structures, it was determined that HPOM-protein non-covalent complexes formed through a combination of electrostatic attraction between the polyoxometalate cluster and positively charged surface regions of HEWL, and direct and water-mediated hydrogen bonds with both the metal-oxo inorganic core and the functional groups of the ligand, where possible. Hence, functionalisation of metal-oxo clusters shows great potential in tuning their interactions with proteins, which is of interest for several biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | |
Collapse
|
2
|
Salazar Marcano DE, Kalandia G, Moussawi MA, Van Hecke K, Parac-Vogt TN. Rational synthesis of elusive organic-inorganic hybrid metal-oxo clusters: formation and post-functionalization of hexavanadates. Chem Sci 2023; 14:5405-5414. [PMID: 37234890 PMCID: PMC10207889 DOI: 10.1039/d3sc00038a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [V6O13{(OCH2)3C-R}2]2- (V6-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters. However, compared to other metal-oxo cluster types, V6-R clusters have been less extensively explored, which is mainly due to poorly understood synthetic challenges and the limited number of viable post-functionalization strategies. In this work, we present an in-depth investigation of the factors that influence the formation of hybrid hexavanadates (V6-R HPOMs) and leverage this knowledge to develop [V6O13{(OCH2)3CNHCOCH2Cl}2]2- (V6-Cl) as a new and tunable platform for the facile formation of discrete hybrid structures based on metal-oxo clusters in relatively high yields. Moreover, we showcase the versatility of the V6-Cl platform through its post-functionalization via nucleophilic substitution with various carboxylic acids of differing complexity and with functionalities that are relevant in multiple disciplines, such as supramolecular chemistry and biochemistry. Hence, V6-Cl was shown to be a straightforward and versatile starting point for the formation of functional supramolecular structures or other hybrid materials, thereby enabling their exploration in various fields.
Collapse
Affiliation(s)
| | - Givi Kalandia
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | | |
Collapse
|
3
|
Asif HM, Khan MA, Zhou Y, Zhang L, Iqbal A, Hussain S, Khalid M, Rani S, Sun R. Synthesis, Characterization and Remarkable Nonlinear Absorption of a Pyridyl Containing Symmetrical Porphyrin-Polyoxometalate Hybrid. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Hu C, Lu YL, Li YZ, Yang YP, Liu M, Liu JM, Li YY, Jin QH, Niu YY. Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: Syntheses, structures, photocatalysis and THz spectra. ENVIRONMENTAL RESEARCH 2022; 206:112267. [PMID: 34756915 DOI: 10.1016/j.envres.2021.112267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Water pollution, which continuously threatens human health and the sustainable development of society, has become a major concern. Photocatalytic degradation is an effective strategy to remove organic dyes from wastewater. For this strategy, it is crucial to select the appropriate catalyst. Using triphenylphosphine oxide (OPPh3) as the ligand, phosphomolybdic acid as the anion template, three new lanthanide complexes [Ln(OPPh3)4(H2O)3](PMo12O40)∙4C2H5OH (1-3) (Ln = Sm, Gd, Tb) were synthesized. The raw materials for the reaction are cheap and readily available. The convenient synthesis method is environmentally friendly, with high yield (70%-80%). Complexes 1-3 are all seven-coordinated mononuclear structures centered on lanthanide ions, [PMo12O40]3- anions and solvent molecules are not coordinated with metal ions. These mononuclear structures eventually form complicated 3D supramolecular structures through hydrogen bonds, Mo-O … π or C-H … π weak interactions. Complexes 1-3 photocatalytic degradation of MB have high removal rates, as catalysts have enough stability to be reused, and can be used as excellent catalysts for the degradation of dye molecules in sewage. Among them, the removal rate of MB by photodegradation of complex 2 was highest (99.50%). In addition, the effects of different initial concentrations of MB solution and different types of organic dyes on the photocatalysis experiment were investigated. The photocatalytic reaction mechanism of complexes 1-3 was also studied. Due to the similar structures of complexes 1-3, they have almost the same THz absorption spectra with different absorption intensity, which may be attributed to the difference of the number of weak interactions. Therefore, terahertz spectroscopy can be used as a sensitive method to distinguish and determine small differences between lanthanide-organic complexes. This is the first time that this spectrum has been used to characterize lanthanide phosphine oxide complexes modified by [PMo12O40]3-.
Collapse
Affiliation(s)
- Cong Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yan-Lei Lu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Min Liu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Ming Liu
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China.
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
5
|
Salazar Marcano DE, Moussawi MA, Anyushin AV, Lentink S, Van Meervelt L, Ivanović-Burmazović I, Parac-Vogt TN. Versatile post-functionalisation strategy for the formation of modular organic-inorganic polyoxometalate hybrids. Chem Sci 2022; 13:2891-2899. [PMID: 35382468 PMCID: PMC8905796 DOI: 10.1039/d1sc06326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.
Collapse
Affiliation(s)
- David E Salazar Marcano
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Mhamad Aly Moussawi
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Alexander V Anyushin
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sarah Lentink
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13, Haus D 81377 Munich Germany
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
6
|
Naulakha P, Mishra NK, Tanmaya Kumar N, Supriya S. Unusual redox activity of the central heteroatom manganese in Anderson anion: Modulating its oxidation state in a gas solid reaction. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Salazar Marcano DE, Lentink S, Moussawi MA, Parac-Vogt TN. Solution Dynamics of Hybrid Anderson-Evans Polyoxometalates. Inorg Chem 2021; 60:10215-10226. [PMID: 33881856 DOI: 10.1021/acs.inorgchem.1c00511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the stability and speciation of metal-oxo clusters in solution is essential for many of their applications in different areas. In particular, hybrid organic-inorganic polyoxometalates (HPOMs) have been attracting increasing attention as they combine the complementary properties of organic ligands and metal-oxygen nanoclusters. Nevertheless, the speciation and solution behavior of HPOMs have been scarcely investigated. Hence, in this work, a series of HPOMs based on the archetypical Anderson-Evans structure, δ-[MnMo6O18{(OCH2)3C-R}2]3-, with different functional groups (R = -NH2, -CH3, -NHCOCH2Cl, -N═CH(2-C5H4N) {pyridine; -Pyr}, and -NHCOC9H15N2OS {biotin; -Biot}) and countercations (tetrabutylammonium {TBA}, Li, Na, and K) were synthesized, and their solution behavior was studied in detail. In aqueous solutions, decomposition of HPOMs into the free organic ligand, [MoO4]2-, and free Mn3+ was observed over time and was shown to be highly dependent on the pH, temperature, and nature of the ligand functional group but largely independent of ionic strength or the nature of the countercation. Furthermore, hydrolysis of the amide and imine bonds often present in postfunctionalized HPOMs was also observed. Hence, HPOMs were shown to exhibit highly dynamic behavior in solution, which needs to be carefully considered when designing HPOMs, particularly for biological applications.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad A Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
8
|
Yu WD, Zhang Y, Han YY, Li B, Shao S, Zhang LP, Xie HK, Yan J. Microwave-Assisted Synthesis of Tris-Anderson Polyoxometalates for Facile CO 2 Cycloaddition. Inorg Chem 2021; 60:3980-3987. [PMID: 33626279 DOI: 10.1021/acs.inorgchem.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Four new tris-Anderson polyoxometalates (POMs), (NH4)4[ZnMo6O18(C4H8NO3)(OH)3]·4H2O (1), (NH4)4[CuMo6O18(C4H8NO3)(OH)3]·4H2O (2), (TBA)3(NH4)[ZnMo6O17(C5H9O3)2(OH)]·10H2O (3) (TBA = n-C16H36N), and (NH4)4[CuMo6O18(C5H9O3)2]·16H2O (4), were synthesized by a microwave-assisted method. Single-crystal X-ray diffraction revealed that 1 and 2 contained a tris (trihydroxyl organic compounds) ligand grafted on one side, while two tris ligands were grafted on two sides to form χ/δ and δ/δ isomers in 3 and 4, respectively. 1H and 13C NMR spectra of the χ/δ isomer 3 were obtained for the first time, with six methylenes showing six peaks in the 1H NMR spectrum and only four peaks in the 13C NMR spectrum. Mass spectrometry monitoring revealed that during the microwave-assistant process the tris ligand can graft onto POMs to form 1, while tris directly coordinates with metallic heteroatoms to form isopolymolybdates during the conventional reflux synthesis process. In addition, 1-4 can catalyze CO2 with epoxides into cyclic carbonates with high selectivity and yields at an atmospheric pressure of CO2, which is lower than the pressure of CO2 in other catalysis using POMs as catalysts. Furthermore, 1-4 showed good catalytic stability and cycling properties. Mechanism studies substantiated POMs cocatalyzed with Br- to improve the catalytic yields.
Collapse
Affiliation(s)
- Wei-Dong Yu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, P. R. China
| | - Yu-Yang Han
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Sai Shao
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Le-Ping Zhang
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Hong-Ke Xie
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| |
Collapse
|
9
|
Anyushin AV, Vanhaecht S, Parac-Vogt TN. A Bis-organosilyl-Functionalized Wells-Dawson Polyoxometalate as a Platform for Facile Amine Postfunctionalization. Inorg Chem 2020; 59:10146-10152. [PMID: 32628015 DOI: 10.1021/acs.inorgchem.0c01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of modular platforms that can undergo postfunctionalization reactions permits coupling of inorganic clusters with different organic functionalities, thereby expanding the range of key physicochemical properties that are relevant for applications in different areas of science. In this work, a novel hybrid Wells-Dawson polyoxometalate (POM) platform was developed and successfully used for postfunctionalization via a nucleophilic substitution reaction. Two new halogen-functionalized bis-organosilyl Wells-Dawson POMs TBA6[α2-P2W17O61{O(SiC3H6-X)2}] (X = Cl or I) were synthesized, and their coupling with amine substrates was explored in a one-step postfunctionalization reaction. The iodide form of the POM has proven to be much more reactive, and its reaction with a range of primary and secondary amines resulted in a series of new bis-substituted Wells-Dawson POMs with the general formula TBA6[α2-P2W17O61{O(SiC3H6-NR1R2)2}]. Coupling of 18 amines with R1 and R2 groups, which exhibited a wide variety in terms of both chemical nature and bulkiness, was achieved under mild conditions via a catalyst-free approach. Using Na2CO3 as a base in acetonitrile solutions at 55 °C resulted in hybrid products that were obtained in high purity and good yields, after a simple isolation and purification procedure.
Collapse
Affiliation(s)
| | - Stef Vanhaecht
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
10
|
Anyushin AV, Kondinski A, Parac-Vogt TN. Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem Soc Rev 2019; 49:382-432. [PMID: 31793568 DOI: 10.1039/c8cs00854j] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyoxometalates (POMs) represent an important group of metal-oxo nanoclusters, typically comprised of early transition metals in high oxidation states (mainly V, Mo and W). Many plenary POMs exhibit good pH, solvent, thermal and redox stability, which makes them attractive components for the design of covalently integrated hybrid organic-inorganic molecules, herein referred to as hybrid-POMs. Until now, thousands of organic hybrid-POMs have been reported; however, only a small fraction can be further functionalized using other organic molecules or metal cations. This emerging class of 'post-functionalizable' hybrid-POMs constitute a valuable modular platform that permits coupling of POM properties with different organic and metal cation functionalities, thereby expanding the key physicochemical properties that are relevant for application in (photo)catalysis, bioinorganic chemistry and materials science. The post-functionalizable hybrid-POM platforms offer an opportunity to covalently link multi-electron redox responsive POM cores with virtually any (bio)organic molecule or metal cation, generating a wide range of materials with tailored properties. Over the past few years, these materials have been showcased in the preparation of framework materials, functional surfaces, surfactants, homogeneous and heterogeneous catalysts and light harvesting materials, among others. This review article provides an overview on the state of the art in POM post-functionalization and highlights the key design and structural features that permit the discovery of new hybrid-POM platforms. In doing so, we aim to make the subject more comprehensible, both for chemists and for scientists with different materials science backgrounds interested in the applications of hybrid (POM) materials. The review article goes beyond the realms of polyoxometalate chemistry and encompasses emerging research domains such as reticular materials, surfactants, surface functionalization, light harvesting materials, non-linear optics, charge storing materials, and homogeneous acid-base catalysis among others.
Collapse
|
11
|
Boulmier A, Haouas M, Tomane S, Michely L, Dolbecq A, Vallée A, Brezová V, Versace DL, Mialane P, Oms O. Photoactive Polyoxometalate/DASA Covalent Hybrids for Photopolymerization in the Visible Range. Chemistry 2019; 25:14349-14357. [PMID: 31392799 DOI: 10.1002/chem.201902573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 12/28/2022]
Abstract
The synthesis of TBA-DASA-POM-DASA, the first photoactive covalent hybrid polyoxometalate (POM) incorporating a donor-acceptor Stenhouse adduct (DASA) reverse photochrome, is presented. It has been evidenced that in solution the equilibrium between the colorless cyclopentenone and the highly colored triene conformers is strongly dependent not only on the nature of the solvent but also the countercations, allowing to tune its optical properties. This complex has been further associated to photochromic spironaphtoxazine cations, resulting in a material which can be activated by two distinct optical stimuli. Moreover, when combined with N-methyldiethanolamine, TBA-DASA-POM-DASA constitutes a performing photoinitiating system for polyethylene glycol diacrylate polymerization and under visible light irradiation, a promising result in a domain scarcely developed in POM chemistry.
Collapse
Affiliation(s)
- Amandine Boulmier
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| | - Somia Tomane
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France.,Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Université, 4 Place Jussieu, 75252, Paris, France
| | - Laurent Michely
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| | - Anne Vallée
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovak Republic
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| | - Olivier Oms
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035, Versailles cedex, France
| |
Collapse
|
12
|
Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03439] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maryam Samaniyan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ruhollah Khajavian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081 Ulm, Germany
| |
Collapse
|
13
|
Zhang J, Huang Y, Li G, Wei Y. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.025] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Mao G, Zhao K, Sun S, Lu Y, Li X. A new derivatization method for the determination of valproic acid in serum using tetramethylammonium hydroxide as a catalyst. Biomed Chromatogr 2018; 33:e4440. [PMID: 30456910 DOI: 10.1002/bmc.4440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Guifu Mao
- Department of PharmacyLiuzhou Traditional Chinese Medical Hospital Guangxi People's Republic of China
| | - Kun Zhao
- Department of PharmacyBeijing Friendship Hospital Pinggu Campus, Capital Medical University Beijing People's Republic of China
| | - Shusen Sun
- College of Pharmacy and Health SciencesWestern New England University Springfield Massachusetts USA
| | - Yanxia Lu
- Department of PharmacyThe General Hospital of the Chinese People's Armed Police Forces Beijing People's Republic of China
| | - Xingang Li
- Department of PharmacyBeijing Tiantan Hospital, Capital Medical University Beijing People's Republic of China
| |
Collapse
|
15
|
Lin X, Huang B, Xiong Z, Fang T, Zhang X, Xiao Z, Wu P. Supramolecular Architectures of Polyoxometalate Hybrids Originating from Halogen and Hydrogen-Bonding Interactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201802912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xinjun Lin
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Zhelun Xiong
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Ting Fang
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Xiaoxiao Zhang
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based Materials; Hubei Provincial Key Laboratory of Green Materials for Light Industry; School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| |
Collapse
|
16
|
Boulmier A, Vacher A, Zang D, Yang S, Saad A, Marrot J, Oms O, Mialane P, Ledoux I, Ruhlmann L, Lorcy D, Dolbecq A. Anderson-Type Polyoxometalates Functionalized by Tetrathiafulvalene Groups: Synthesis, Electrochemical Studies, and NLO Properties. Inorg Chem 2018; 57:3742-3752. [DOI: 10.1021/acs.inorgchem.7b02976] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amandine Boulmier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| | - Antoine Vacher
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Dejin Zang
- Institut de Chimie, Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, CEDEX 67081 Strasbourg, France
| | - Shu Yang
- Institut de Chimie, Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, CEDEX 67081 Strasbourg, France
| | - Ali Saad
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| | - Olivier Oms
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| | - Isabelle Ledoux
- ENS Paris Saclay, Laboratoire de Photonique Quantique Moléculaire, UMR ENS CNRS 8537, CentraleSupelec, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Laurent Ruhlmann
- Institut de Chimie, Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, CEDEX 67081 Strasbourg, France
| | - Dominique Lorcy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, CEDEX 78035 Versailles, France
| |
Collapse
|
17
|
Wang X, Sun J, Lin H, Chang Z, Liu G, Wang X. A series of novel Anderson-type polyoxometalate-based MnII complexes constructed from pyridyl-derivatives: assembly, structures, electrochemical and photocatalytic properties. CrystEngComm 2017. [DOI: 10.1039/c7ce00659d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Vanhaecht S, Quanten T, Parac-Vogt TN. A mild post-functionalization method for the vanadium substituted P2W15V3 Wells–Dawson polyoxometalate based on a copper catalyzed azide–alkyne cycloaddition. Dalton Trans 2017; 46:10215-10219. [DOI: 10.1039/c7dt02450a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel post-functionalization method for the vanadium substituted P2W15V3 Wells–Dawson polyoxometalate has been developed using a copper catalyzed azide–alkyne cycloaddition.
Collapse
Affiliation(s)
- S. Vanhaecht
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - T. Quanten
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | | |
Collapse
|