1
|
Cui M, Murase R, Shen Y, Sato T, Koyama S, Uchida K, Tanabe T, Takaishi S, Yamashita M, Iguchi H. An electrically conductive metallocycle: densely packed molecular hexagons with π-stacked radicals. Chem Sci 2022; 13:4902-4908. [PMID: 35655871 PMCID: PMC9067574 DOI: 10.1039/d2sc00447j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical conduction among metallocycles has been unexplored because of the difficulty in creating electronic transport pathways. In this work, we present an electrocrystallization strategy for synthesizing an intrinsically electron-conductive metallocycle, [Ni6(NDI-Hpz)6(dma)12(NO3)6]·5DMA·nH2O (PMC-hexagon) (NDI-Hpz = N,N'-di(1H-pyrazol-4-yl)-1,4,5,8-naphthalenetetracarboxdiimide). The hexagonal metallocycle units are assembled into a densely packed ABCABC… sequence (like the fcc geometry) to construct one-dimensional (1D) helical π-stacked columns and 1D pore channels, which were maintained under the liberation of H2O molecules. The NDI cores were partially reduced to form radicals as charge carriers, resulting in a room-temperature conductivity of (1.2-2.1) × 10-4 S cm-1 (pressed pellet), which is superior to that of most NDI-based conductors including metal-organic frameworks and organic crystals. These findings open up the use of metallocycles as building blocks for fabricating conductive porous molecular materials.
Collapse
Affiliation(s)
- Mengxing Cui
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Ryuichi Murase
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Yongbing Shen
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tappei Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- School of Materials Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| |
Collapse
|
2
|
Grajewski J. Recent Advances in the Synthesis and Applications of Nitrogen-Containing Macrocycles. Molecules 2022; 27:1004. [PMID: 35164269 PMCID: PMC8839354 DOI: 10.3390/molecules27031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macrocyclic nitrogen-containing compounds are versatile molecules. Supramolecular, noncovalent interactions of these macrocycles with guest molecules enables them to act as catalysts, fluorescent sensors, chiral or nonchiral selectors, or receptors of small molecules. In the solid state, they often display a propensity to form inclusion compounds. All of these properties are usually closely connected with the presence of nitrogen atoms in the macrocyclic ring. As most of the reviews published so far on macrocycles were written from the viewpoint of functional groups, synthetic methods, or the structure, search methods for literature reports in terms of the physicochemical properties of these compounds may be unobvious. In this minireview, the emphasis was put on the synthesis and applications of nitrogen-containing macrocyclic compounds, as they differ from their acyclic analogs, and at the same time are the driving force for further research.
Collapse
Affiliation(s)
- Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Chamorro PB, Aparicio F. Chiral nanotubes self-assembled from discrete non-covalent macrocycles. Chem Commun (Camb) 2021; 57:12712-12724. [PMID: 34749387 DOI: 10.1039/d1cc04968b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many strategies have been used to construct supramolecular hollow tubes, including helical folding of oligomers, bundling of rod-like structures, rolling-up of sheets and stacking of covalent cycles. On the other hand, controlling chirality at the supramolecular level continues attracting much interest because of its implications in future applications of porous systems. This review article covers the main examples in the literature that use simple molecular structures as chiral units for precise assembly into discrete non-covalent cyclic structures that are able to form chiral supramolecular tubular systems.
Collapse
Affiliation(s)
- P B Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - F Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Pasban S, Raissi H. New insights into Hexakis macrocycles as a novel nano-carrier for highly potent anti-cancer treatment: A new challenge in drug delivery. Colloids Surf B Biointerfaces 2020; 197:111402. [PMID: 33059208 DOI: 10.1016/j.colsurfb.2020.111402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study is to design and evaluate a new tubular assembly structure of Hexakis (m-phenylene ethynylene) (m-PE) macrocycles and to explore its potential application as an innovative drug delivery system. First, we focused on how (m-PE) macrocycles can be self-assembled in both chloroform (CHCl3) and water solvents for the formation of the assembled nanotube using molecular dynamics (MD) simulations. In contrast to their behavior in water solvent, all ten (m-PE) macrocycles remain aggregated at low concentrations of CHCl3. We found that these macrocycles carrying chiral side chains and capable of H-bonded self-association, assemble into tubular stacks. Then, the dual delivery strategy for the transport of doxorubicin (DOX) and curcumin (Cur) on the self-assembly system of hexakis (m-PE) nanocarrier is examined using molecular dynamics (MD) simulation and free energy calculation. The obtained results indicated that the binding energy of DOX (- 298.9 kJ/mol) on hexakis (m-PE) in the presence of Cur is higher than free DOX (- 247.7 kJ/mol). Furthermore, in the interaction of the DOX and hexakis m-PE, the contribution of van der Walls (vdW) energy is higher than electrostatic (elec) energy, which can be related to the strong π-π interactions between the drug molecules with the carrier surface. In general, the results indicated that the simultaneous delivery of DOX and Cur through DOX/Cur/hexakis (m-PE) could be a promising vehicle in tumor therapy. Based on the obtained results of the present research, hexakis (m-PE) macrocycle can be used as a drug delivery vehicle for targeted or systemic delivery.
Collapse
Affiliation(s)
- Samaneh Pasban
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
5
|
Kennedy ADW, de Haas N, Iranmanesh H, Luis ET, Shen C, Wang P, Price JR, Donald WA, Andréasson J, Huang F, Beves JE. Diastereoselective Control of Tetraphenylethene Reactivity by Metal Template Self-Assembly. Chemistry 2019; 25:5708-5718. [PMID: 30775812 DOI: 10.1002/chem.201806259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Indexed: 11/12/2022]
Abstract
The reaction of 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetraaniline with 2-pyridinecarboxaldehyde and iron(II) chloride resulted, after aqueous workup, in the diastereoselective formation of an [Fe2 L3 ]4+ triple-stranded helicate structure, irrespective of the stoichiometry employed. The helicate structure was characterized in solution by multinuclear NMR spectroscopy, and in the solid state by single-crystal X-ray crystallography. The reaction of iron(II) tetrafluoroborate or iron(II) bistriflimide with the tetraaniline and 2-pyridinecarboxaldehyde allowed the formation of an [Fe8 L6 ]16+ cube when the appropriate stoichiometry was used, but these structures were unstable with respect to hydrolysis. The pendant amine groups on the helicate can be functionalized by reaction with acid chlorides or anhydrides, and the resulting functionalized tetraphenylethene (TPE) units were isolated by the reaction of the helicate with tris(2-aminoethyl)amine. The emission properties of the TPE units were studied in THF/water mixtures, and they were found by dynamic light scattering to self-assemble into large (av. diameter 250 nm) structures.
Collapse
Affiliation(s)
| | | | | | - Ena T Luis
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chao Shen
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Pi Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.,State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jason R Price
- ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | | | - Joakim Andréasson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | | |
Collapse
|
6
|
Zhong Y, Yang Y, Shen Y, Xu W, Wang Q, Connor AL, Zhou X, He L, Zeng XC, Shao Z, Lu ZL, Gong B. Enforced Tubular Assembly of Electronically Different Hexakis(m-Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. J Am Chem Soc 2017; 139:15950-15957. [DOI: 10.1021/jacs.7b09647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Zhong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Shen
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwu Xu
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Qiuhua Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Alan L. Connor
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Xibin Zhou
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan He
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhifeng Shao
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-lin Lu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bing Gong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|