1
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
2
|
Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. WATER 2022. [DOI: 10.3390/w14030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water oxidation is still one of the most important challenges to develop efficient artificial photosynthetic devices. In recent decades, the development and study of molecular complexes for water oxidation have allowed insight into the principles governing catalytic activity and the mechanism as well as establish ligand design guidelines to improve performance. However, their durability and long-term stability compromise the performance of molecular-based artificial photosynthetic devices. In this context, heterogenization of molecular water oxidation catalysts on electrode surfaces has emerged as a promising approach for efficient long-lasting water oxidation for artificial photosynthetic devices. This review covers the state of the art of strategies for the heterogenization of molecular water oxidation catalysts onto electrodes for (photo)electrochemical water oxidation. An overview and description of the main binding strategies are provided explaining the advantages of each strategy and their scope. Moreover, selected examples are discussed together with the the differences in activity and stability between the homogeneous and the heterogenized system when reported. Finally, the common design principles for efficient (photo)electrocatalytic performance summarized.
Collapse
|
3
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Reilly CE, Dillon RJ, Nayak A, Brogan S, Moot T, Brennaman MK, Lopez R, Meyer TJ, Alibabaei L. Dye-Sensitized Nonstoichiometric Strontium Titanate Core-Shell Photocathodes for Photoelectrosynthesis Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15261-15269. [PMID: 33745279 DOI: 10.1021/acsami.1c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A core-shell approach that utilizes a high-surface-area conducting core and an outer semiconductor shell is exploited here to prepare p-type dye-sensitized solar energy cells that operate with a minimal applied bias. Photocathodes were prepared by coating thin films of nanocrystalline indium tin oxide with a 0.8 nm Al2O3 seeding layer, followed by the chemical growth of nonstoichiometric strontium titanate. Films were annealed and sensitized with either a porphyrin chromophore or a chromophore-catalyst molecular assembly consisting of the porphyrin covalently tethered to the ruthenium complex. The sensitized photoelectrodes produced cathodic photocurrents of up to -315 μA/cm2 under simulated sunlight (AM1.5G, 100 mW/cm2) in aqueous media, pH 5. The photocurrent was increased by the addition of regenerative hole donors to the system, consistent with slow interfacial recombination kinetics, an important property of p-type dye-sensitized electrodes.
Collapse
Affiliation(s)
- Caroline E Reilly
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert J Dillon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shane Brogan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Taylor Moot
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew K Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rene Lopez
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leila Alibabaei
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Hu K, Sampaio RN, Schneider J, Troian-Gautier L, Meyer GJ. Perspectives on Dye Sensitization of Nanocrystalline Mesoporous Thin Films. J Am Chem Soc 2020; 142:16099-16116. [DOI: 10.1021/jacs.0c04886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ke Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Renato N. Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
6
|
Swords WB, Meyer GJ, Hammarström L. Excited-state proton-coupled electron transfer within ion pairs. Chem Sci 2020; 11:3460-3473. [PMID: 34109019 PMCID: PMC8152629 DOI: 10.1039/c9sc04941j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of light to drive proton-coupled electron transfer (PCET) reactions has received growing interest, with recent focus on the direct use of excited states in PCET reactions (ES-PCET). Electrostatic ion pairs provide a scaffold to reduce reaction orders and have facilitated many discoveries in electron-transfer chemistry. Their use, however, has not translated to PCET. Herein, we show that ion pairs, formed solely through electrostatic interactions, provide a general, facile means to study an ES-PCET mechanism. These ion pairs formed readily between salicylate anions and tetracationic ruthenium complexes in acetonitrile solution. Upon light excitation, quenching of the ruthenium excited state occurred through ES-PCET oxidation of salicylate within the ion pair. Transient absorption spectroscopy identified the reduced ruthenium complex and oxidized salicylate radical as the primary photoproducts of this reaction. The reduced reaction order due to ion pairing allowed the first-order PCET rate constants to be directly measured through nanosecond photoluminescence spectroscopy. These PCET rate constants saturated at larger driving forces consistent with approaching the Marcus barrierless region. Surprisingly, a proton-transfer tautomer of salicylate, with the proton localized on the carboxylate functional group, was present in acetonitrile. A pre-equilibrium model based on this tautomerization provided non-adiabatic electron-transfer rate constants that were well described by Marcus theory. Electrostatic ion pairs were critical to our ability to investigate this PCET mechanism without the need to covalently link the donor and acceptor or introduce specific hydrogen bonding sites that could compete in alternate PCET pathways.
Collapse
Affiliation(s)
- Wesley B Swords
- Department of Chemistry, Ångström Laboratories, Uppsala University Box 523 SE75120 Uppsala Sweden .,Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill 27599 USA
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill 27599 USA
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratories, Uppsala University Box 523 SE75120 Uppsala Sweden
| |
Collapse
|
7
|
Robb AJ, Knorr ES, Watson N, Hanson K. Metal ion linked multilayers on mesoporous substrates: Energy/electron transfer, photon upconversion, and more. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Halide Photoredox Chemistry. Chem Rev 2019; 119:4628-4683. [PMID: 30854847 DOI: 10.1021/acs.chemrev.8b00732] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Michael D Turlington
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew B Maurer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wesley B Swords
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
9
|
Bae S, Jang JE, Lee HW, Ryu J. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sanghyun Bae
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ji-Eun Jang
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyun-Wook Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
10
|
Abstract
Iodide redox chemistry is intimately coupled with the formation and breaking of chemical bonds that are relevant to emerging solar energy technologies. In this Account, recent advances in dye-sensitized iodide oxidation chemistry in organic solutions are described. Here RuII sensitizers with high cationic charge, tuned reduction potentials, and specific iodide receptor site(s) are shown to self-assemble in organic solvents and yield structures that rapidly oxidize iodide and generate I-I bonds when illuminated with visible light. These studies provided new insights into the fascinating behavior of our most polarizable and easily oxidized monatomic anion. Sensitized iodide photo-oxidation in CH3CN solutions consists of two mechanistic steps. In the first step, an excited-state sensitizer oxidizes iodide (I-) to an iodine atom (I•) through diffusional encounters. The second step involves the reaction of I• with I- to form the I-I bond of diiodide, I2•-. The overall reaction converts a green photon into about 1.64 eV of free energy in the form of I2•- and the reduced sensitizer. The free energy is only transiently available, as back-electron transfer to yield ground-state products is quantitative. Interestingly, when the free energy change is near zero, iodide photo-oxidation occurs rapidly with rate constants near the diffusion limit, i.e., >1010 M-1 s-1. Such rapid reactivity is in line with anecdotal knowledge that iodide is an outstanding electron donor and is indicative of adiabatic electron transfer through an inner-sphere mechanism. In low-dielectric-constant solvents, dicationic RuII sensitizers were found to form tight ion pairs with iodide. Diimine ligands with additional cationic charge, or "binding pockets" that recognize halides, have been utilized to position one or more halides at specific locations about the sensitizer before light absorption. Diverse photochemical reactions observed with these supramolecular assemblies range from the photorelease of halides to the formation of I-I bonds where both iodides present in the ground-state assembly react. Natural population analysis through density functional theory calculations accurately predicts the site(s) of iodide ion-pairing and provides information on the associated free energy change. The ability to direct light-driven bond formation in these ionic assemblies is extended to chloride and bromide ions. The structure-property relationships identified, and those that continue to emerge, may one day allow for the rational design of molecules and materials that drive desired halide transformations when illuminated with light.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Kellett CW, Swords WB, Turlington MD, Meyer GJ, Berlinguette CP. Resolving orbital pathways for intermolecular electron transfer. Nat Commun 2018; 9:4916. [PMID: 30464202 PMCID: PMC6249235 DOI: 10.1038/s41467-018-07263-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Over 60 years have passed since Taube deduced an orbital-mediated electron transfer mechanism between distinct metal complexes. This concept of an orbital pathway has been thoroughly explored for donor-acceptor pairs bridged by covalently bonded chemical residues, but an analogous pathway has not yet been conclusively demonstrated for formally outer-sphere systems that lack an intervening bridge. In our present study, we experimentally resolve at an atomic level the orbital interactions necessary for electron transfer through an explicit intermolecular bond. This finding was achieved using a homologous series of surface-immobilized ruthenium catalysts that bear different terminal substituents poised for reaction with redox active species in solution. This arrangement enabled the discovery that intermolecular chalcogen⋯iodide interactions can mediate electron transfer only when these interactions bring the donor and acceptor orbitals into direct contact. This result offers the most direct observation to date of an intermolecular orbital pathway for electron transfer.
Collapse
Affiliation(s)
- Cameron W Kellett
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Wesley B Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, NC, 27599-3290, USA
| | - Michael D Turlington
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, NC, 27599-3290, USA
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, NC, 27599-3290, USA.
| | - Curtis P Berlinguette
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Chemical and Biological Engineering, 2360 East Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Stewart Blusson Quantum Matter Institute, 2355 East Mall, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
12
|
Troian-Gautier L, Wehlin SAM, Meyer GJ. Photophysical Properties of Tetracationic Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride. Inorg Chem 2018; 57:12232-12244. [DOI: 10.1021/acs.inorgchem.8b01921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
13
|
Wehlin SAM, Troian-Gautier L, Sampaio RN, Marcélis L, Meyer GJ. Ter-Ionic Complex that Forms a Bond Upon Visible Light Absorption. J Am Chem Soc 2018; 140:7799-7802. [PMID: 29897741 DOI: 10.1021/jacs.8b04961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A "ter-ionic complex" composed of a tetracationic Ru(II) complex and two iodide ions was found to yield a covalent I-I bond upon visible light excitation in acetone solution. 1H NMR, visible absorption and DFT studies revealed that one iodide was associated with a ligand while the other was closer to the Ru metal center. Standard Stern-Volmer quenching of the excited state by iodide revealed upward curvature with a novel saturation at high concentrations. The data were fully consistent with a mechanism in which the Ru metal center in the excited state accepts an electron from iodide to form an iodine atom and, within 70 ns, that atom reacts with the iodide associated with the ligand to yield I2•-. This rapid formation of an I-I bond was facilitated by the supramolecular assembly of the three reactant ions necessary for this ter-ionic reaction that is relevant to solar fuel production.
Collapse
Affiliation(s)
- Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Renato N Sampaio
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Lionel Marcélis
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles , Université libre de Bruxelles (ULB) , Avenue F.D. Roosevelt 50, CP165/64 , B-1050 Brussels , Belgium
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
14
|
Benazzi E, Magni M, Colombo A, Dragonetti C, Caramori S, Bignozzi CA, Grisorio R, Suranna GP, Cipolla MP, Manca M, Roberto D. Bis(1,10-phenanthroline) copper complexes with tailored molecular architecture: from electrochemical features to application as redox mediators in dye-sensitized solar cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Tian L, Föhlinger J, Pati PB, Zhang Z, Lin J, Yang W, Johansson M, Kubart T, Sun J, Boschloo G, Hammarström L, Tian H. Ultrafast dye regeneration in a core-shell NiO-dye-TiO 2 mesoporous film. Phys Chem Chem Phys 2018; 20:36-40. [PMID: 29210392 DOI: 10.1039/c7cp07088h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a core-shell NiO-dye-TiO2 mesoporous film was fabricated for the first time, utilizing atomic layer deposition technique and a newly designed triphenylamine dye. The structure of the film was confirmed by SEM, TEM, and EDX. Excitation of the dye led to efficient and fast charge separation, by hole injection into NiO, followed by an unprecedentedly fast dye regeneration (t1/2 ≤ 500 fs) by electron transfer to TiO2. The resulting charge separated state showed a pronounced transient absorption spectrum caused by the Stark effect, and no significant decay was found within 1.9 ns. This indicates that charge recombination between NiO and TiO2 is much slower than that between the NiO and the reduced dye in the absence of the TiO2 layer (t1/2 ≈ 100 ps).
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Benazzi E, Cristino V, Caramori S, Meda L, Boaretto R, Bignozzi CA. Electrochemical characterization of polypyridine iron(II) and cobalt(II) complexes for organic redox flow batteries. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Takizawa SY, Kano R, Ikuta N, Murata S. An anionic iridium(iii) complex as a visible-light absorbing photosensitizer. Dalton Trans 2018; 47:11041-11046. [DOI: 10.1039/c8dt02477d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anionic Ir(iii) photosensitizer bearing coumarin dyes has been developed and applied to the visible-light-driven hydrogen generation.
Collapse
Affiliation(s)
- Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Ryoto Kano
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|