1
|
Bacchella C, Capucciati A, Monzani E. A Focus on the Link Between Metal Dyshomeostasis, Norepinephrine, and Protein Aggregation. Antioxidants (Basel) 2025; 14:347. [PMID: 40227404 PMCID: PMC11939683 DOI: 10.3390/antiox14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Neurodegenerative disorders are one of the main public health problems worldwide and, for this reason, they have attracted the attention of several researchers who aim to better understand the molecular processes linked to the etiology of these disorders, including Alzheimer's and Parkinson's diseases. In this review, we describe both the beneficial and toxic effect of norepinephrine (NE) and its connected ROS/metal-mediated pathways, which end in neuromelanin (NM) formation and protein aggregation. In particular, we emphasize the importance of stabilizing the delicate homeostatic balance that regulates (i) the metal/ROS-promoted oxidation of catecholamines, as NE, and (ii) the generation of oxidative by-products capable of covalently and non-covalently modifying neuroproteins, thus altering their stability and their oligomerization; these processes may end in (iii) the incorporation of protein conjugates into vesicles, which then evolve into neuromelanin (NM) organelles. In general, we aim to provide an up-to-date overview of the challenges and controversies emerging from the current literature to delineate a direction for future research.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy;
| | - Andrea Capucciati
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy;
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Dey C, Roy M, Ghosh R, Pal P, Roy D, Ghosh Dey S. Active Site Environment and Reactivity of Copper-Aβ in Membrane Mimetic SDS Micellar Environment. Chemistry 2024; 30:e202401531. [PMID: 38899478 DOI: 10.1002/chem.202401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid β (Aβ) peptide in extracellular deposits generated upon proteolysis of Amyloid Precursor Protein (APP). While copper (Cu(II)) binds to Aβ in soluble oligomeric and aggregated forms, its interaction with membrane-bound Aβ remains elusive. Investigating these interactions is crucial for understanding AD pathogenesis. Here, utilizing SDS micelles as a simplified membrane mimic, we focus on elucidating the interplay between membrane-anchored Aβ and copper, given their pivotal roles in AD. We employed spectroscopic techniques including UV, CD, and EPR to characterize the active site of Cu-Aβ complexes. Our findings demonstrate that copper interacts with Aβ peptides in membrane-mimicking micellar environments similarly to aqueous buffer solutions. Cu-Aβ complexes in this medium also induce higher hydrogen peroxide (H2O2) production, potentially contributing to AD-related oxidative stress. Moreover, we observe an increased oxidation rate of neurotransmitter such as dopamine by Cu-Aβ complexes. These results enhance our understanding of Cu-Aβ interactions in AD pathology and offer insights into potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rimi Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Puja Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debapriyo Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
3
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023; 13:biom13020287. [PMID: 36830656 PMCID: PMC9953312 DOI: 10.3390/biom13020287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.
Collapse
|
5
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Bacchella C, Gentili S, Mozzi SI, Monzani E, Casella L, Tegoni M, Dell’Acqua S. Role of the Cysteine in R3 Tau Peptide in Copper Binding and Reactivity. Int J Mol Sci 2022; 23:ijms231810726. [PMID: 36142637 PMCID: PMC9503722 DOI: 10.3390/ijms231810726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a widespread neuroprotein that regulates the cytoskeleton assembly. In some neurological disorders, known as tauopathies, tau is dissociated from the microtubule and forms insoluble neurofibrillary tangles. Tau comprises four pseudorepeats (R1-R4), containing one (R1, R2, R4) or two (R3) histidines, that potentially act as metal binding sites. Moreover, Cys291 and Cys322 in R2 and R3, respectively, might have an important role in protein aggregation, through possible disulfide bond formation, and/or affecting the binding and reactivity of redox-active metal ions, as copper. We, therefore, compare the interaction of copper with octadeca-R3-peptide (R3C) and with the mutant containing an alanine residue (R3A) to assess the role of thiol group. Spectrophotometric titrations allow to calculate the formation constant of the copper(I) complexes, showing a remarkable stronger interaction in the case of R3C (l log Kf = 13.4 and 10.5 for copper(I)-R3C and copper(I)-R3A, respectively). We also evaluate the oxidative reactivity associated to these copper complexes in the presence of dopamine and ascorbate. Both R3A and R3C peptides increase the capability of copper to oxidize catechols, but copper-R3C displays a peculiar mechanism due to the presence of cysteine. HPLC-MS analysis shows that cysteine can form disulfide bonds and dopamine-Cys covalent adducts, with potential implication in tau aggregation process.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Sara Ida Mozzi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Correspondence:
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Oxidase Reactivity of Cu II Bound to N-Truncated Aβ Peptides Promoted by Dopamine. Int J Mol Sci 2021; 22:ijms22105190. [PMID: 34068879 PMCID: PMC8155989 DOI: 10.3390/ijms22105190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.
Collapse
|
8
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase Activity of Copper Amyloid-β. Inorg Chem 2021; 60:606-613. [PMID: 33405903 PMCID: PMC8023651 DOI: 10.1021/acs.inorgchem.0c02243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Interaction
of copper ions with Aβ peptides alters the redox
activity of the metal ion and can be associated with neurodegeneration.
Many studies deal with the characterization of the copper binding
mode responsible for the reactivity. Oxidation experiments of dopamine
and related catechols by copper(II) complexes with the N-terminal
amyloid-β peptides Aβ16 and Aβ9, and the Aβ16[H6A] and Aβ16[H13A]
mutant forms, both in their free amine and N-acetylated forms show
that efficient reactivity requires the oxygenation of a CuI-bis(imidazole) complex with a bound substrate. Therefore, the active
intermediate for catechol oxidation differs from the proposed “in-between
state” for the catalytic oxidation of ascorbate. During the
catechol oxidation process, hydrogen peroxide and superoxide anion
are formed but give only a minor contribution to the reaction. The redox cycling of copper bound to
amyloid-β peptide
requires the generation of a Cu(I)-Aβ-catecholate complex. When
copper(II) is confined in the N-terminal portion, its reduction is
slow and causes a shift toward a bis-His coordination environment.
The addition of catechol to the Cu(I)-bis(imidazole) complex results
in a faster reaction with dioxygen. The reactive species for catechol
oxidation does not correspond to the proposed “in-between state”
for ascorbate oxidation.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
9
|
Dell’Acqua S, Massardi E, Monzani E, Di Natale G, Rizzarelli E, Casella L. Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. Int J Mol Sci 2020; 21:ijms21207553. [PMID: 33066163 PMCID: PMC7589926 DOI: 10.3390/ijms21207553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
We investigate the interaction of hemin with four fragments of prion protein (PrP) containing from one to four histidines (PrP106-114, PrP95-114, PrP84-114, PrP76-114) for its potential relevance to prion diseases and possibly traumatic brain injury. The binding properties of hemin-PrP complexes have been evaluated by UV-visible spectrophotometric titration. PrP peptides form a 1:1 adduct with hemin with affinity that increases with the number of histidines and length of the peptide; the following log K1 binding constants have been calculated: 6.48 for PrP76-114, 6.1 for PrP84-114, 4.80 for PrP95-114, whereas for PrP106-114, the interaction is too weak to allow a reliable binding constant calculation. These constants are similar to that of amyloid-β (Aβ) for hemin, and similarly to hemin-Aβ, PrP peptides tend to form a six-coordinated low-spin complex. However, the concomitant aggregation of PrP induced by hemin prevents calculation of the K2 binding constant. The turbidimetry analysis of [hemin-PrP76-114] shows that, once aggregated, this complex is scarcely soluble and undergoes precipitation. Finally, a detailed study of the peroxidase-like activity of [hemin-(PrP)] shows a moderate increase of the reactivity with respect to free hemin, but considering the activity over long time, as for neurodegenerative pathologies, it might contribute to neuronal oxidative stress.
Collapse
Affiliation(s)
- Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| | - Elisa Massardi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Giuseppe Di Natale
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Enrico Rizzarelli
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| |
Collapse
|
10
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing α-Synuclein. J Pharmacol Exp Ther 2020; 372:157-165. [PMID: 31744850 PMCID: PMC6978699 DOI: 10.1124/jpet.119.262246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Lewy body diseases such as Parkinson's disease involve intraneuronal deposition of the protein α-synuclein (AS) and depletion of nigrostriatal dopamine (DA). Interactions of AS with DA oxidation products may link these neurohistopathologic and neurochemical abnormalities via two potential pathways: spontaneous oxidation of DA to dopamine-quinone and enzymatic oxidation of DA catalyzed by monoamine oxidase to form 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is then oxidized to DOPAL-Q. We compared these two pathways in terms of the ability of DA and DOPAL to modify AS. DOPAL was far more potent than DA both in oligomerizing and forming quinone-protein adducts with (quinonizing) AS. The DOPAL-induced protein modifications were enhanced similarly by pro-oxidation with Cu(II) or tyrosinase and inhibited similarly by antioxidation with N-acetylcysteine. Dopamine oxidation evoked by Cu(II) or tyrosinase did not quinonize AS. In cultured MO3.13 human oligodendrocytes DOPAL resulted in the formation of numerous intracellular quinoproteins that were visualized by near-infrared spectroscopy. We conclude that of the two routes by which oxidation of DA modifies AS and other proteins the route via DOPAL is more prominent. The results support developing experimental therapeutic strategies that might mitigate deleterious modifications of proteins such as AS in Lewy body diseases by targeting DOPAL formation and oxidation. SIGNIFICANCE STATEMENT: Interactions of the protein α-synuclein with products of dopamine oxidation in the neuronal cytoplasm may link two hallmark abnormalities of Parkinson disease: Lewy bodies (which contain abundant AS) and nigrostriatal DA depletion (which produces the characteristic movement disorder). Of the two potential routes by which DA oxidation may alter AS and other proteins, the route via the autotoxic catecholaldehyde 3,4-dihydroxyphenylacetaldehyde is more prominent; the results support experimental therapeutic strategies targeting DOPAL formation and DOPAL-induced protein modifications.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Yehonatan Sharabi
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| |
Collapse
|
12
|
Bacchella C, Nicolis S, Dell'Acqua S, Rizzarelli E, Monzani E, Casella L. Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorg Chem 2019; 59:900-912. [PMID: 31869218 DOI: 10.1021/acs.inorgchem.9b03153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination between dyshomeostatic levels of catecholamine neurotransmitters and redox-active metals such as copper and iron exacerbates the oxidative stress condition that typically affects neurodegenerative diseases. We report a comparative study of the oxidative reactivity of copper complexes with amyloid-β (Aβ40) and the prion peptide fragment 76-114 (PrP76-114), containing the high-affinity binding site, toward dopamine and 4-methylcatechol, in aqueous buffer and in sodium dodecyl sulfate micelles, as a model membrane environment. The competitive oxidative and covalent modifications undergone by the peptides were also evaluated. The high binding affinity of Cu/peptide to micelles and lipid membranes leads to a strong reduction (Aβ40) and quenching (PrP76-114) of the oxidative efficiency of the binary complexes and to a stabilization and redox silencing of the ternary complex CuII/Aβ40/PrP76-114, which is highly reactive in solution. The results improve our understanding of the pathological and protective effects associated with these complexes, depending on the physiological environment.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche , Via P. Gaifami 18 , 95125 Catania , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
13
|
Bacchella C, Gentili S, Bellotti D, Quartieri E, Draghi S, Baratto MC, Remelli M, Valensin D, Monzani E, Nicolis S, Casella L, Tegoni M, Dell'Acqua S. Binding and Reactivity of Copper to R 1 and R 3 Fragments of tau Protein. Inorg Chem 2019; 59:274-286. [PMID: 31820933 DOI: 10.1021/acs.inorgchem.9b02266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tau protein is present in significant amounts in neurons, where it contributes to the stabilization of microtubules. Insoluble neurofibrillary tangles of tau are associated with several neurological disorders known as tauopathies, among which is Alzheimer's disease. In neurons, tau binds tubulin through its microtubule binding domain which comprises four imperfect repeats (R1-R4). The histidine residues contained in these fragments are potential binding sites for metal ions and are located close to the regions that drive the formation of amyloid aggregates of tau. In this study, we present a detailed characterization through potentiometric and spectroscopic methods of the binding of copper in both oxidation states to R1 and R3 peptides, which contain one and two histidine residues, respectively. We also evaluate how the redox cycling of copper bound to tau peptides can mediate oxidation that can potentially target exogenous substrates such as neuronal catecholamines. The resulting quinone oxidation products undergo oligomerization and can competitively give post-translational peptide modifications yielding catechol adducts at amino acid residues. The presence of His-His tandem in the R3 peptide strongly influences both the binding of copper and the reactivity of the resulting copper complex. In particular, the presence of the two adjacent histidines makes the copper(I) binding to R3 much stronger than in R1. The copper-R3 complex is also much more active than the copper-R1 complex in promoting oxidative reactions, indicating that the two neighboring histidines activate copper as a catalyst in molecular oxygen activation reactions.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Denise Bellotti
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Eleonora Quartieri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Sara Draghi
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maria Camilla Baratto
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maurizio Remelli
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Daniela Valensin
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
14
|
Pariente Cohen N, Lo Presti E, Dell'Acqua S, Jantz T, Shimon LJW, Levy N, Nassir M, Elbaz L, Casella L, Fischer B. Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)-Prion Peptide Complex. Inorg Chem 2019; 58:8995-9003. [PMID: 31247811 DOI: 10.1021/acs.inorgchem.9b00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log β' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.
Collapse
Affiliation(s)
| | - Eliana Lo Presti
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Thomas Jantz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Linda J W Shimon
- Faculty of Chemistry, Crystallography Unit , Weizmann Institute , Rehovot 76100 , Israel
| | - Naomi Levy
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Molhm Nassir
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Lior Elbaz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Luigi Casella
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Bilha Fischer
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
15
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamin, oxidativer Stress und Protein‐Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Enrico Monzani
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| | | | | | | | | | - Fabio A. Zucca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
| | - Eugene V. Mosharov
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - David Sulzer
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - Luigi Zecca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
| | - Luigi Casella
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| |
Collapse
|
16
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl 2019; 58:6512-6527. [PMID: 30536578 DOI: 10.1002/anie.201811122] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best-studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox-active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post-translational protein modification. Thus, protein-quinone modification is a heterogeneous process involving multiple DA-derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.
Collapse
Affiliation(s)
- Enrico Monzani
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Stefania Nicolis
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | | | | | - Chiara Bacchella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA.,Departments of Neurology and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy.,Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Luigi Casella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|