1
|
Ashraf R, Khalid Z, Qin QP, Iqbal MA, Taskin-Tok T, Bayil İ, Quah CK, Daud NAM, Alqahtany FZ, Amin MA, El-Bahy SM. Synthesis of N-heterocyclic carbene‑selenium complexes modulating apoptosis and autophagy in cancer cells: Probing the interactions with biomolecules and enzymes. Bioorg Chem 2025; 160:108435. [PMID: 40199010 DOI: 10.1016/j.bioorg.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Growing cancer resistance is a global threat that calls for development of newer chemotherapeutic analogues especially targeted based therapy to enhance efficacy and selectivity. In this contribution, herein, we report synthesis of selenium incorporated N-heterocyclic carbene (NHC) compounds to explore their potential cytotoxicity against HeLa cells. Test compounds were assured for suitability as drug candidates through physiochemical properties that showed lipophilicity logP 0.85-1.45 for C1-C3 and found stable in biological media (DMEM), whereas, least reactive with N-acetyl cysteine (NAC) and L-glutathione. All the studied compounds showed good cytotoxicity against various cancer strains while compound C1 [3,3-(hexane-1,6-diyl)bis(1-phenethyl-1H-imidazole-2(3H)-selenone)] and C2 [3,3-(hexane-1,6-diyl)bis(1-decyl-1H-imidazole-2(3H)-selenone)] showed promising results with IC50 values of 14.65 ± 0.66 and 8.05 ± 0.35 μg/mL respectively as compared to positive control 21.5 ± 0.05 μg/mL against HeLa cell lines. These compounds showed six-fold higher apoptosis than control with higher accumulation of Ca+ ions intracellularly that alters the expression level of autophagy proteins and increased capase-9 activity. Cell cycle analysis indicated an arrest of cycle in G1 phase of HeLa cells when treated with C1 & C2. Test compounds showed prominent affinity for binding with DNA and inhibiting thioredoxin reductase enzymes in time dependent manners. These findings indicate that Selenium NHC compounds are promising drug candidates to induce cytotoxicity via apoptosis, autophagy and mitochondrial membrane disruptions to manage tumor growth.
Collapse
Affiliation(s)
- Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan.
| | - Zohra Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan; Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, 38000, Pakistan.
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, +9027310, Gaziantep, Turkiye; Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, +9027310, Gaziantep, Turkiye
| | - İmren Bayil
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, +9027310, Gaziantep, Turkiye
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Aisyah Mohamad Daud
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Mohammed A Amin
- Department of chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salah M El-Bahy
- Department of chemistry, Turabah University college, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Mohapatra D, Pattanayak PD, Chatterjee S, Kaminsky W, Sasamori T, Nakamura T, Dinda R. Unsymmetrical salen-based oxido V IV: Synthesis, characterization, biomolecular interactions, and anticancer activity. J Inorg Biochem 2025; 264:112818. [PMID: 39733738 DOI: 10.1016/j.jinorgbio.2024.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Three stable oxidovanadium(IV) [VIVOL1-3] complexes (1-3) were synthesized through the incorporation of unsymmetrical salen ligands (H2L1-3). All the ligands are synthesized, and their vanadium compounds were thoroughly characterized by CHNS analysis, various spectroscopy methods (IR, UV-Vis, NMR spectroscopy), and HR-ESI-MS. The structures of 1-3 were validated through the single-crystal X-ray analysis. UV-Vis and HR-ESI-MS were used to determine the solution stability of the complexes in the aqueous phase, revealing their stability in aqueous/biological medium. Various spectroscopy techniques were used to study the DNA/BSA binding abilities, and the results indicate that 1-3 shows effective biomolecular interactions. The partition coefficient result indicates that 1-3 are highly hydrophobic and may easily permeate the cells. Finally, the in vitro anticancer properties of 1-3 were determined with two cancerous (HT-29 and A549), and the NIH-3T3 normal cell lines. Among the series, 3 is the most cytotoxic, with IC50 values of 6.2 ± 0.2 and 5.3 ± 0.4 μM against HT-29 and A549 cell lines respectively. Moreover, the apoptotic cell death mechanism of 1-3 was assessed through DAPI, AO/EB, and double staining apoptosis experiments.
Collapse
Affiliation(s)
- Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Souvik Chatterjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700106, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Takahiro Sasamori
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
3
|
Mohanty M, Das S, Pattanayak PD, Lima S, Kaminsky W, Dinda R. Ru III-Morpholine-Derived Thiosemicarbazone-Based Metallodrugs: Lysosome-Targeted Anticancer Agents. ACS APPLIED BIO MATERIALS 2025; 8:1210-1226. [PMID: 39806879 DOI: 10.1021/acsabm.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three RuIII complexes 1-3 of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of 2 through a single-crystal X-ray diffraction study. The solution stability of 1-3 was tested using conventional techniques such as UV-vis and HRMS. Further, the anticancer activity of 1-3 was tested in HT-29 and HeLa cancer cell lines. To gain insight into their mechanism of action, the cytotoxicity, hydrophobicity, and the interaction of 1-3 with DNA and HSA were evaluated by different conventional methods such as absorption, fluorescence, and circular dichroism studies. Along with favorable biomolecule interaction, 1-3 revealed potent selectivity toward cancer cells, which is a prerequisite for the generation of an anticancer drug. According to cell viability results, 1 has the highest cytotoxicity among all in the group, against both cells, respectively. Additionally, the fluorescence-active ruthenium complexes selectively target lysosomes, which is evaluated by live-cell imaging. 1-3 disrupt the lysosome membrane potential by generating an excessive amount of reactive oxygen species, which results in an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | | | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
4
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
5
|
Mohapatra D, Patra SA, Pattanayak PD, Sahu G, Sasamori T, Dinda R. Monomeric copper(II) complexes with unsymmetrical salen environment: Synthesis, characterization and study of biological activities. J Inorg Biochem 2024; 253:112497. [PMID: 38290220 DOI: 10.1016/j.jinorgbio.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Three new ONNO-donor tetradentate unsymmetrical salen ligands were synthesized by using o-phenyl diamine with substituted salicylaldehydes followed by a two-step reaction methodology. These three ligands by reaction with Cu(OAc)2.4H2O produced three new monomeric Cu(II) complexes, [CuII(L1-3)] (1-3). Elemental analysis, IR, UV-vis, NMR, and HR-ESI-MS techniques were used to analyze and characterize all the synthesized ligands and their corresponding metal complexes. Molecular structures of 1-3 were confirmed by the single-crystal-XRD analysis. Furthermore, the DNA binding ability of these complexes was checked through UV-vis, fluorescence spectroscopy, and also by circular dichroism studies. All the complexes were found to show an intercalation mode of binding with the Kb value in the range of 104-105 M-1. Finally, 1-3 was tested against two malignant (HeLa and A549) and non-cancerous (NIH-3T3) cell lines to check their in vitro antiproliferative activities. Among all, 1 is the most cytotoxic of the series having IC50 values of 5.7 ± 0.9 and 6.0 ± 0.3 μM against HeLa and A549 cell lines, respectively. This result is also consistent with the DNA binding order. Furthermore, the apoptotic mode of cell death of all the complexes was also evaluated by DAPI, AO/EB, and Annexin V-FITC/PI double staining assays.
Collapse
Affiliation(s)
- Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Takahiro Sasamori
- University of Tsukuba, Institute of Natural Sciences B-506, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Sahu G, Sahu K, Patra SA, Mohapatra D, Khangar R, Sengupta S, Dinda R. Hydrolytically Stable Ti IV-Hydrazone-Based Metallodrugs: Protein Interaction and Anticancer Potential. ACS APPLIED BIO MATERIALS 2023; 6:5360-5371. [PMID: 38019535 DOI: 10.1021/acsabm.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In this work, three titanium(IV) [TiIV(L1-3)2] (1-3) complexes have been reported using three different tridentate dibasic ONO donor hydrazone ligands, pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L1), furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L2), and thiophene-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L3) tethered with heterocyclic moieties. Elemental analysis, FT-IR, UV-vis, NMR, HR-ESI-MS, and single-crystal X-ray analysis have been used to characterize H2L1-3 and 1-3. In solid structures of 1-3, two ligand molecules with N2O4 donor sets give distorted octahedral geometries to the metal center. The aqueous stability of 1-3 was investigated and well correlated to their perceived pharmacological results. During the investigation, all three complexes were found to be hydrolytically stable in a 90% DMSO-d6/10% D2O (v/v) medium up to 48 h. Furthermore, the interaction of 1-3 with bovine serum albumin (BSA) was tested using fluorescence and absorption techniques. The complexes showed static quenching with a biomolecular quenching constant of Kq ∼ 1013 proposing a high affinity of complexes for BSA. Finally, the anticancer potential of 1-3 was tested against HeLa, A549, and NIH-3T3 cell lines. Among all, 1 with an IC50 value of 11.6 ± 1.1 μM against HeLa cells was found to be the most cytotoxic in the series. Furthermore, it has been found that the compounds induce an apoptotic mode of cell death, which is confirmed by the live cell confocal microscopy and flow cytometry techniques.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kausik Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ravi Khangar
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
7
|
Banerjee A, Patra SA, Sahu G, Sciortino G, Pisanu F, Garribba E, Carvalho MFNN, Correia I, Pessoa JC, Reuter H, Dinda R. A Series of Non-Oxido V IV Complexes of Dibasic ONS Donor Ligands: Solution Stability, Chemical Transformations, Protein Interactions, and Antiproliferative Activity. Inorg Chem 2023; 62:7932-7953. [PMID: 37154533 PMCID: PMC10367067 DOI: 10.1021/acs.inorgchem.3c00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A series of mononuclear non-oxido vanadium(IV) complexes, [VIV(L1-4)2] (1-4), featuring tridentate bi-negative ONS chelating S-alkyl/aryl-substituted dithiocarbazate ligands H2L1-4, are reported. All the synthesized non-oxido VIV compounds are characterized by elemental analysis, spectroscopy (IR, UV-vis, and EPR), ESI-MS, as well as electrochemical techniques (cyclic voltammetry). Single-crystal X-ray diffraction studies of 1-3 reveal that the mononuclear non-oxido VIV complexes show distorted octahedral (1 and 2) or trigonal prismatic (3) arrangement around the non-oxido VIV center. EPR and DFT data indicate the coexistence of mer and fac isomers in solution, and ESI-MS results suggest a partial oxidation of [VIV(L1-4)2] to [VV(L1-4)2]+ and [VVO2(L1-4)]-; therefore, all these three complexes are plausible active species. Complexes 1-4 interact with bovine serum albumin (BSA) with a moderate binding affinity, and docking calculations reveal non-covalent interactions with different regions of BSA, particularly with Tyr, Lys, Arg, and Thr residues. In vitro cytotoxic activity of all complexes is assayed against the HT-29 (colon cancer) and HeLa (cervical cancer) cells and compared with the NIH-3T3 (mouse embryonic fibroblast) normal cell line by MTT assay and DAPI staining. The results suggest that complexes 1-4 are cytotoxic in nature and induce cell death in the cancer cell lines by apoptosis and that a mixture of VIV, VV, and VVO2 species could be responsible for the biological activity.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona 43007, Spain
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, Osnabruck 49069, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
8
|
Maurya MR, Kumar N, Avecilla F. Mononuclear/Binuclear [V IVO]/[V VO 2] Complexes Derived from 1,3-Diaminoguanidine and Their Catalytic Application for the Oxidation of Benzoin via Oxygen Atom Transfer. ACS OMEGA 2023; 8:1301-1318. [PMID: 36643530 PMCID: PMC9835170 DOI: 10.1021/acsomega.2c06732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ligands H4sal-dag (I) and H4Brsal-dag (II) derived from 1,3-diaminoguanidine and salicylaldehyde or 5-bromosalicylaldehyde react with one or 2 mol equivalent of vanadium precursor to give two different series of vanadium complexes. Thus, complexes [VIVO(H2sal-dag) (H2O)] (1) and [VIVO(H2Brsal-dag) (H2O)] (2) were isolated by the reaction of an equimolar ratio of these ligands with [VIVO(acac)2] in MeOH. In the presence of K+/Cs+ ion and using aerially oxidized [VIVO(acac)2], the above reaction gave complexes [K(H2O){VVO2(H2sal-dag)}]2 (3), [Cs(H2O){VVO2(H2sal-dag)}]2 (4), [K(H2O){VO2(H2Brsal-dag)}]2 (5), and [Cs(H2O){VVO2(H2Brsal-dag)}]2 (6), which could also be isolated by direct aerial oxidation of complexes 1 and 2 in MeOH in the presence of K+/Cs+ ion. Complexes [(H2O)VIVO(Hsal-dag)VVO2] (7) and [(H2O)VIVO(HBrsal-dag)VVO2] (8) were isolated upon increasing the ligand-to-vanadium precursor molar ratio to 1:2 under an air atmosphere. When I and II were reacted with aerially oxidized [VIVO(acac)2] in a 1:2 molar ratio in MeOH in the presence of K+/Cs+ ion, they formed [K(H2O)5{(VVO2)2(Hsal-dag)}]2 (9), [Cs(H2O)2{(VVO2)2(Hsal-dag)}]2 (10), [K2(H2O)4{(VVO2)2(Brsal-dag)}]2 (11), and [Cs2(H2O)4{(VVO2)2(Brsal-dag)}]2 (12). The structures of complexes 3, 4, 5, and 9 determined by single-crystal X-ray diffraction study confirm the mono-, bi-, tri-, and tetra-anionic behaviors of the ligands. All complexes were found to be an effective catalyst for the oxidation of benzoin to benzil via oxygen atom transfer (OAT) between DMSO and benzoin. Under aerobic condition, this oxidation also proceeds effectively in the absence of DMSO. Electron paramagnetic resonance and 51V NMR studies demonstrated the active role of a stable V(IV) intermediate during OAT between DMSO and benzoin.
Collapse
Affiliation(s)
- Mannar R. Maurya
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee247667, India
| | - Naveen Kumar
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee247667, India
| | - Fernando Avecilla
- Grupo
NanoToxGen, Centro de Investigacións Científicas Avanzadas
(CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071A Coruña, Spain
| |
Collapse
|
9
|
Sahu G, Patra SA, Lima S, Das S, Görls H, Plass W, Dinda R. Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death. Chemistry 2023; 29:e202202694. [PMID: 36598160 DOI: 10.1002/chem.202202694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.,Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
10
|
Patel N, Patel AK, Travadi M, Jadeja R, Butcher R, Muddassir M, Kumar S, Kapavarapu R. Metal-organic hybrids based on [VO2(L)]− tecton with cations of imidazole and its derivative: Synthesis, single-crystal structures and molecular docking studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Synthesis, molecular docking and anticancer potential of azolium based salts and their silver complexes: DNA/BSA interaction studies and cell cycle analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
13
|
Patra SA, Banerjee A, Sahu G, Mohanty M, Lima S, Mohapatra D, Görls H, Plass W, Dinda R. Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. J Inorg Biochem 2022; 233:111852. [DOI: 10.1016/j.jinorgbio.2022.111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
14
|
Roy S, Böhme M, Lima S, Mohanty M, Banerjee A, Buchholz A, Plass W, Rathnam S, Banerjee I, Kaminsky W, Dinda R. Methoxido‐Bridged Lacunary Heterocubane Oxidovanadium(IV) Cluster with Azo Ligands: Synthesis, X‐ray Structure, Magnetic Properties, and Antiproliferative Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satabdi Roy
- National Institute of Technology Rourkela department of chemistry INDIA
| | - Michael Böhme
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Sudhir Lima
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Monalisa Mohanty
- National Institute of Technology Rourkela Department of Chemisry INDIA
| | - Atanu Banerjee
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Axel Buchholz
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Winfried Plass
- Friedrich-Schiller-Universitat Jena Anorganische und Analytische Chemie Humboldtstr. 8 7743 Jena GERMANY
| | - Sharan Rathnam
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Indranil Banerjee
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Werner Kaminsky
- University of Washington Department of Chemistry UNITED STATES
| | - Rupam Dinda
- National Institute of Technology Rourkela Department of Chemsitry INDIA
| |
Collapse
|
15
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
16
|
Sahu G, Patra SA, Mohanty M, Lima S, Pattanayak PD, Kaminsky W, Dinda R. Dithiocarbazate based oxidomethoxidovanadium(V) and mixed-ligand oxidovanadium(IV) complexes: Study of solution behavior, DNA binding, and anticancer activity. J Inorg Biochem 2022; 233:111844. [DOI: 10.1016/j.jinorgbio.2022.111844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
|
17
|
Majumder M, Das T, Sepay N, Rajak KK. A study of DNA/BSA interaction and catalytic potential of oxidovanadium(V, IV) complexes incorporating dibenzofuran based O^N^O ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Ni L, Chang W, Zhu S, Zhang Y, Chen P, Zhang H, Zhao H, Zha J, Jiang S, Tao L, Zhou Z, Wang X, Liu Y, Diao G. Exploring Anticancer Activities and Structure-Activity Relationships of Binuclear Oxidovanadium(IV) Complexes. ACS APPLIED BIO MATERIALS 2021; 4:8571-8583. [PMID: 35005923 DOI: 10.1021/acsabm.1c01037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dimeric mixed-ligand oxidovanadium complexes [V2O2(1,3-pdta)(bpy)2]·9H2O (1) and [V2O2(1,3-pdta)(phen)2]·6H2O (2) feature a symmetric binuclear structure bridged by 1,3-pdta, which is different from our previous reported asymmetric binuclear complex [V2O2(edta)(phen)2]·11H2O (3).In this study, a wide range of analytical techniques were carried out to fully characterize the complexes 1 and 2 and further investigate their structural stabilities. Density functional theory calculations of 1 and 2 also suggest that they might have good reactivity with biomolecules as anticancer agents. To assess and screen the antitumor activities of compounds 1-3 together with their four corresponding monomeric complexes [VO(ida)(phen)], [VO(ida)(bpy)], [VO(OH)(phen)2]Cl, and [VO(Hedta)]-, we have performed in vitro experiments with hepatocellular carcinoma HepG2 and SMMC-7721 cell lines by MTT analyses. Complex 2 was found to have the highest inhibitory potency against the growth of HepG2 and SMMC-7721 cells (IC50 = 2.07 ± 0.72 μM for HepG2; 13.00 ± 3.06 μM for SMMC-7721) compared to other compounds. The structure-activity relationship studies showed that the antitumor effect of compound 2 is higher than that of other compounds. After studying the monomeric compounds of 1-3, their effects were also ranked. Moreover, complex 2 displayed stronger binding affinity toward calf thymus DNA (Kb = 5.71 × 104 M-1) and cleavage activities than the other complexes (Kb = 1.34 × 104 M-1 for 1 and 5.22 × 104 M-1 for 3, respectively). We further extended the cellular mechanisms of drug action and found that 2 could block DNA synthesis and cell division of HepG2 and 7721 cells and further induce apoptosis by flow cytometry assays. In short, these results indicate that binuclear oxidovanadium compounds could have potential as simple, effective, and safe antitumor agents.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Wenhui Chang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Shuangshuang Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Hanzhi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Hongxia Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Junjie Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| | - Shengsheng Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiqing Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yanqing Liu
- College of Medicine, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Mukherjee S, Pal CK, Kotakonda M, Joshi M, Shit M, Ghosh P, Choudhury AR, Biswas B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, Dinda R. Water-Soluble Dioxidovanadium(V) Complexes of Aroylhydrazones: DNA/BSA Interactions, Hydrophobicity, and Cell-Selective Anticancer Potential. Inorg Chem 2021; 60:15291-15309. [PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Rajib Samanta
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, 5 Jalan Universiti, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
21
|
Spectroscopic characterization, structural investigation, DFT study, and Hirshfeld surface analysis of rhodium and ruthenium amido azo complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Patra SA, Mohanty M, Banerjee A, Kesarwani S, Henkel F, Reuter H, Dinda R. Protein binding and cytotoxic activities of monomeric and dimeric oxido-vanadium(V) salan complexes: Exploring the solution behavior of monoalkoxido-bound oxido-vanadium(V) complex. J Inorg Biochem 2021; 224:111582. [PMID: 34450411 DOI: 10.1016/j.jinorgbio.2021.111582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/09/2023]
Abstract
Three ONNO donor tetradentate diamino bis(phenolato) "salan" ligands, N, N'-dimethyl-N, N'-bis-(5-chloro-2-hydroxy-3-methyl-benzyl)-1,2-diaminoethane (H2L1), N, N'-dimethyl-N, N'-bis-(5-chloro-2-hydroxy-3-isopropyl-6-methyl-benzyl)-1,2-diamino-ethane (H2L2) and N, N'-bis-(5-chloro-2-hydroxy-3-isopropyl-6-methyl-benzyl)-1,2-diaminocyclohexane (H2L3) have been synthesized by following Mannich condensation reaction. Reaction of these ligands with their corresponding vanadium metal precursors gave one oxidomethoxidovanadium(V) [VVOL1(OCH3)] (1) and two monooxido-bridged divanadium (V, V) complexes [VVOL2-3]2(μ-O) (2-3). The complexes were characterized by IR, UV-vis, NMR and ESI mass spectrometry. Also, the structure of all the complexes (1-3) was confirmed by the Single-Crystal X-ray diffraction analysis, which revealed a distorted octahedral geometry around the metal centres. The solution behavior of the [VVOL1(OCH3)] (1) reveals the formation of two different types of V(V) species in solution, the structurally characterized compound 1 and its corresponding monooxido-bridged divanadium (V, V) complex [VVOL1]2(μ-O), which was further studied by IR, and NMR spectroscopy. The electrochemical behavior of all the complexes was evaluated through cyclic voltammetry. Interaction of the salan-V(V) complexes with human serum albumin (HSA) and bovine serum albumin (BSA) were analysed through fluorescence quenching, UV-vis absorption titration, synchronous fluorescence, circular dichroism studies, and förster resonance energy transfer (FRET). Finally, the in vitro cytotoxicity of the complexes was investigated against MCF-7 and HT-29 and NIH-3T3 cell lines. Cytotoxicity value of complexes in both MCF-7 and HT-29 follows the same trend that is 3 > 1 > 2 which is in line with protein binding affinity of the complexes.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shivani Kesarwani
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Felix Henkel
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
23
|
Study of DNA Interaction and Cytotoxicity Activity of Oxidovanadium(V) Complexes with ONO Donor Schiff Base Ligands. INORGANICS 2021. [DOI: 10.3390/inorganics9090066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two new oxidovanadium(V) complexes, (HNEt3)[VVO2L] (1) and [(VVOL)2μ-O] (2), have been synthesized using a tridentate Schiff base ligand H2L [where H2L = 4-((E)-(2-hydroxy-5-nitrophenylimino)methyl)benzene-1,3-diol] and VO(acac)2 as starting metal precursor. The ligand and corresponding metal complexes are characterized by physicochemical (elemental analysis), spectroscopic (FT-IR, UV–Vis, and NMR), and spectrometric (ESI–MS) methods. X-ray crystallographic analysis indicates the anion in salt 1 features a distorted square-pyramidal geometry for the vanadium(V) center defined by imine-N, two phenoxide-O, and two oxido-O atoms. The interaction of the compounds with CT–DNA was studied through UV–Vis absorption titration and circular dichroism methods. The results indicated that complexes showed enhanced binding affinity towards DNA compared to the ligand molecule. Finally, the in vitro cytotoxicity studies of H2L, 1, and 2 were evaluated against colon cancer (HT-29) and mouse embryonic fibroblast (NIH-3T3) cell lines by MTT assay. The results demonstrated that the compounds manifested a cytotoxic potential comparable with clinically referred drugs and caused cell death by apoptosis.
Collapse
|
24
|
Synthesis, characterization and DFT studies of novel –CH2– capped and non-capped salan complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Roy S, Mohanty M, Miller RG, Patra SA, Lima S, Banerjee A, Metzler-Nolte N, Sinn E, Kaminsky W, Dinda R. Probing CO Generation through Metal-Assisted Alcohol Dehydrogenation in Metal-2-(arylazo)phenol Complexes Using Isotopic Labeling (Metal = Ru, Ir): Synthesis, Characterization, and Cytotoxicity Studies. Inorg Chem 2020; 59:15526-15540. [PMID: 32993294 DOI: 10.1021/acs.inorgchem.0c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction of 2-{2-(benzo[1,3]dioxol-5-yl)- diazo}-4-methylphenol (HL) with [Ru(PPh3)3Cl2] in ethanol resulted in the carbonylated ruthenium complex [RuL(PPh3)2(CO)] (1), wherein metal-assisted decarbonylation via in situ ethanol dehydrogenation is observed. When the reaction was performed in acetonitrile, however, the complex [RuL(PPh3)2(CH3CN)] (2) was obtained as the main product, probably by trapping of a common intermediate through coordination of CH3CN to the Ru(II) center. The analogous reaction of HL with [Ir(PPh3)3Cl] in ethanol did not result in ethanol decarbonylation and instead gave the organoiridium hydride complex [IrL(PPh3)2(H)] (3). Unambiguous evidence for the generation of CO via ruthenium-assisted ethanol oxidation is provided by the synthesis of the 13C-labeled complex, [Ru(PPh3)2L(13CO)] (1A) using isotopically labeled ethanol, CH313CH2OH. To summarize all the evidence, a ruthenium-assisted mechanistic pathway for the decarbonylation and generation of alkane via alcohol dehydrogenation is proposed. In addition, the in vitro antiproliferative activity of complexes 1-3 was tested against human cervical (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines. Complexes 1-3 showed impressive cytotoxicity against both HeLa (half-maximal inhibitory concentration (IC50) value of 3.84-4.22 μM) and HT-29 cancer cells (IC50 values between 3.3 and 4.5 μM). Moreover, the complexes were comparatively less toxic to noncancerous NIH-3T3 cells.
Collapse
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Reece G Miller
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Nils Metzler-Nolte
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Ekkehard Sinn
- Department of Chemistry, Western Michigan University, Kalamazoo 49008, Michigan, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
26
|
Banerjee A, Dash SP, Mohanty M, Sahu G, Sciortino G, Garribba E, Carvalho MFNN, Marques F, Costa Pessoa J, Kaminsky W, Brzezinski K, Dinda R. New V IV, V IVO, V VO, and V VO 2 Systems: Exploring their Interconversion in Solution, Protein Interactions, and Cytotoxicity. Inorg Chem 2020; 59:14042-14057. [PMID: 32914971 DOI: 10.1021/acs.inorgchem.0c01837] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of one oxidoethoxidovanadium(V) [VVO(L1)(OEt)] (1) and two nonoxidovanadium(IV) complexes, [VIV(L2-3)2] (2 and 3), with aroylhydrazone ligands incorporating naphthalene moieties, are reported. The synthesized oxido and nonoxido vanadium complexes are characterized by various physicochemical techniques, and their molecular structures are solved by single crystal X-ray diffraction (SC-XRD). This revealed that in 1 the geometry around the vanadium atom corresponds to a distorted square pyramid, with a O4N coordination sphere, whereas that of the two nonoxido VIV complexes 2 and 3 corresponds to a distorted trigonal prismatic arrangement with a O4N2 coordination sphere around each "bare" vanadium center. In aqueous solution, the VVO moiety of 1 undergoes a change to VVO2 species, yielding [VVO2(L1)]- (1'), while the nonoxido VIV-compounds 2 and 3 are partly converted into their corresponding VIVO complexes, [VIVO(L2-3)(H2O)] (2' and 3'). Interaction of these VVO2, VIVO, and VIV systems with two model proteins, ubiquitin (Ub) and lysozyme (Lyz), is investigated through docking approaches, which suggest the potential binding sites: the interaction is covalent for species 2' and 3', with the binding to Glu16, Glu18, and Asp21 for Ub, and His15 for Lyz, and it is noncovalent for species 1', 2, and 3, with the surface residues of the proteins. The ligand precursors and complexes are also evaluated for their in vitro antiproliferative activity against ovarian (A2780) and prostate (PC3) human cancer cells and in normal fibroblasts (V79) to check the selectivity of the compounds for cancer cells.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Krzysztof Brzezinski
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
27
|
Patel R, Patel S, Kumhar D, Patel N, Patel A, Jadeja R, Patel N, Butcher R, Cortijo M, Herrero S. Two new copper(II) binuclear complexes with 2-[(E)-(pyridine-2yl-hydrazono)methyl]phenol: Molecular structures, quantum chemical calculations, cryomagnetic properties and catalytic activity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Patel N, Prajapati AK, Jadeja RN, Tripathi IP, Dwivedi N. Experimental, quantum computational study and in vitro antidiabetic activity of oxidovanadium(IV) complexes incorporating 2,2’-bis(pyridylmethyl)amine and polypyridyl ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1774562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Neetu Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A. K. Prajapati
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - R. N. Jadeja
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - I. P. Tripathi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| | - N. Dwivedi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| |
Collapse
|
29
|
Behera S, Behura R, Mohanty M, Dinda R, Mohanty P, Verma AK, Sahoo SK, Jali B. Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2,4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Banerjee A, Mohanty M, Lima S, Samanta R, Garribba E, Sasamori T, Dinda R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01246g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and characterization of mixed ligand oxidovanadium(iv) complexes [VIVOL1–2(LN–N)] (1–3) are reported. With a view to evaluating their biological activity, their DNA/HSA interaction and cytotoxicity activity have been explored.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajib Samanta
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Takahiro Sasamori
- Graduate School of Natural Sciences
- Nagoya City University Yamanohata 1
- Nagoya
- Japan
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
31
|
Roy S, Banerjee A, Lima S, Horn Jr A, Sampaio RMSN, Ribeiro N, Correia I, Avecilla F, Carvalho MFNN, Kuznetsov ML, Pessoa JC, Kaminsky W, Dinda R. Unusual chemistry of Cu(ii) salan complexes: synthesis, characterization and superoxide dismutase activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01892a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu(ii)-salan complexes: structural and spectral characterization, solvent assisted ring cleavage and correlation of superoxide dismutase activity with cyclic voltammetry data and steric effects.
Collapse
|
32
|
Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. J Inorg Biochem 2019; 203:110908. [PMID: 31683125 DOI: 10.1016/j.jinorgbio.2019.110908] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023]
Abstract
Two new dimeric Zn(II) ([{ZnL1(DMSO2)}2]·DMSO (1), [{ZnL2Cl}2] (2)) and a novel tetrameric Zn(II) complex ([(Zn2L3)2(μ-OAc)2(μ3-O)2] (3)), where H2L1 = 4-(p-methoxyphenyl) thiosemicarbazone of o-hydroxynapthaldehyde, HL2 = 4-(p-methoxyphenyl)thiosemicarbazone of benzoyl pyridine and H2L3 = 4-(p-chlorophenyl)thiosemicarbazone of o-vanillin are reported. Ligands and their complexes were characterized by spectroscopic and single crystal X-ray diffraction techniques. In addition, the complexes exhibited good binding affinity towards HSA (1012 M-1), which is supported by their ability to quench the tryptophan fluorescence emission spectra of HSA. The complexes were also screened for their DNA binding propensity through UV-vis absorption titration, circular dichroism and fluorescence spectral studies. Results show that they effectively interact with CT-DNA through an intercalative mode of binding, with binding constants ranging from 103 to 104 M-1. Among the three complexes 1 has the highest binding affinity towards CT-DNA. Further, the phosphatase activity was evaluated using bis(2,4-dinitrophenyl)phosphate (BDNPP) as substrate, however, the complexes did not yield any measurable catalytic activity. Nevertheless the complexes showed significant cytotoxic potential against HeLa and HT-29 cancer cell lines that was assessed through MTT assay and DAPI staining. Remarkably, complex 1 showed better activity than cisplatin against HT-29 cell line.
Collapse
|
33
|
Zhu M, Song D, Liu N, Wang K, Su J, Xiong M, Zhang X, Xu Y, Gao E. Isomeric Effect on the anticancer Behavior of two Zinc (II) complexes based on 3,5‐bis(1‐imidazoly) pyridine: Experimental and Theoretical Approach. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mingchang Zhu
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Da Song
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Ning Liu
- Liaoning Institute for Food Control (Liaoning Institute of Pharmaceutical Research) Shenyang 110015 China
| | - Kehua Wang
- School of Chemistry and Life ScienceAnshan Normal University Anshan China
| | - Junqi Su
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Meng Xiong
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xi Zhang
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Yuang Xu
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Enjun Gao
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| |
Collapse
|
34
|
Mohammadnezhad G, Akintola O, Buchholz A, Görls H, Plass W. Probing the chirality of oxidovanadium( v) centers in complexes with tridentate sugar Schiff-base ligands: solid-state and solution behavior. NEW J CHEM 2019. [DOI: 10.1039/c9nj02881a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Configurations of oxidovanadium centers in diastereomeric complexes with chiral sugar ligands are assigned and in the solid state triggered by the coordination number at the vanadium center through the steric requirements of the chelate ligand.
Collapse
Affiliation(s)
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| |
Collapse
|
35
|
Biswal D, Pramanik NR, Drew MGB, Jangra N, Maurya MR, Kundu M, Sil PC, Chakrabarti S. Synthesis, crystal structure, DFT calculations, protein interaction, anticancer potential and bromoperoxidase mimicking activity of oxidoalkoxidovanadium( v) complexes. NEW J CHEM 2019; 43:17783-17800. [DOI: 10.1039/c9nj02471a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intriguing structure–activity relationships (SARs) indicating an apparent dependence of anticancer and haloperoxidase activities on the carbon chain length of the alkoxo group.
Collapse
Affiliation(s)
- Debanjana Biswal
- Department of Chemistry
- University College of Science
- Kolkata 700009
- India
| | | | | | - Nancy Jangra
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mannar R. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mousumi Kundu
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | - Parames C. Sil
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | | |
Collapse
|
36
|
Mohanty M, Maurya SK, Banerjee A, Patra SA, Maurya MR, Crochet A, Brzezinski K, Dinda R. In vitrocytotoxicity and catalytic evaluation of dioxidovanadium(v) complexes in an azohydrazone ligand environment. NEW J CHEM 2019. [DOI: 10.1039/c9nj01815h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis, characterization,in vitrocytotoxicity and catalytic potential of the dioxidovanadium(v) complexes of azohydrazones.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Shailendra K. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | | | - Mannar R. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Aurélien Crochet
- Department of Chemistry
- Fribourg Center for Nanomaterials
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
37
|
Lima S, Banerjee A, Mohanty M, Sahu G, Kausar C, Patra SK, Garribba E, Kaminsky W, Dinda R. Synthesis, structure and biological evaluation of mixed ligand oxidovanadium(iv) complexes incorporating 2-(arylazo)phenolates. NEW J CHEM 2019. [DOI: 10.1039/c9nj01910c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthesis and characterization of mixed ligand oxidovanadium(iv) complexes [VIVO(L1–4)(LNN)] incorporating arylazo ligands: evaluation of DNA/BSA interaction and cytotoxicity activity.
Collapse
Affiliation(s)
- Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Gurunath Sahu
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Chahat Kausar
- Department of Life Science
- National Institute of Technology
- Rourkela
- India
| | - Samir Kumar Patra
- Department of Life Science
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|