1
|
Lakshmy S, Kalarikkal N, Chakraborty B. Transition Metal (Cu, Pd, and Ag)-Modified Nb 2S 2C Monolayer for Highly Efficient Catechol Sensing: A First-Principles Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13819-13833. [PMID: 38912715 DOI: 10.1021/acs.langmuir.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Motivated by recent advancements and the escalating application of two-dimensional (2D) gas or molecule sensors, this study explores the potential of the 2D Nb2S2C monolayer for detecting biomolecule catechol (Cc), whose excess concentration is highly dangerous to living beings. We use first-principles density functional theory (DFT) calculations to assess the Cc sensing performance of pure and transition metal (TM = Cu, Pd, Ag)-modified Nb2S2C monolayers. The Nb2S2C monolayer belonging to the new class of synthesized 2D materials, TM carbo-chalcogenides (TMCC), combines distinctive properties from both TM dichalcogenides and TM carbides and exhibits physisorption (-0.66 eV) toward the Cc molecule. Notably, the surface modifications with these TMs significantly enhanced the adsorption energy of Cc. The chemisorption of the Cc molecule on the Pd to Cu-modified monolayer is demonstrated with adsorption energies ranging from -1.09 to -1.3 eV and is due to the robust charge transfer and orbital interactions between the valence orbitals of TMs and Cc. In addition, the modification of the surface by TM leads to an increased work function sensitivity toward the Cc molecule. The study establishes the thermal stability at 300 K and dynamic stability of TM-Nb2S2C through ab initio molecular dynamics (AIMD) simulations and Phonon calculations, respectively. The theoretical estimation of achievable recovery time at 400 and 450 K for Pd and Ag and at 500 K for the Cu-modified Nb2S2C monolayer, respectively, confirms the potential practical application of the sensor for Cc detection. These compelling characteristics position the Nb2S2C monolayer as a promising nanomaterial for detecting Cc molecules in the environment.
Collapse
Affiliation(s)
- Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi J Bhabha National Institute, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
2
|
Sun S, Liu C, Liang J, Wang W, Li R, Zhao L, Dai C. Alkali-Ion Intercalation Chemistry and Phase Evolution of Sn 4P 3. ACS NANO 2024; 18:8283-8295. [PMID: 38453719 DOI: 10.1021/acsnano.3c12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Despite its high theoretical capacities, Sn4P3 anodes in alkali-ion batteries (AIBs) have been plagued by electrode damage and capacity decay during cycling, mainly rooted in the huge volume changes and irreversible phase segregation. However, few reports endeavor to ascertain whether these causes bear relevance to phase evolution upon cycling. Moreover, the phase evolution mechanism for alkali-ion intercalation remains imprecise. Herein, the structural transformations and detailed mechanisms upon various alkali-ion intercalation processes are systematically revealed, utilizing both experimental techniques and theoretical simulations. The results reveal that the energy storage of Sn4P3 occurs in a two-stage process, starting from an insertion process, followed by a transition process. As the cycle proceeds, the final delithiated/desodiated/depotassiated components gradually trap alkali ions (Li+, Na+, and K+), which is attributed to the incomplete electrochemical transition and difficulty in Sn4P3 regeneration due to the kinetic limitations in removing M (M = Li, Na, and K). Furthermore, Sn4P3 anode obeys the "shrinking core mechanism" in potassium-ion batteries (KIBs), wherein a minor fraction of Sn4P3 in the outer layer of the particles is initially involved in the potassiation/depotassiation processes, followed by a gradual participation of the inner parts until the entire particle is involved. It is worth mentioning that K-Sn alloys are not found to exist during the transition process of KIBs; instead, K-Sn-P phases are found, which makes it differ from that in lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs). These findings are expected to deepen the understanding of the reaction mechanism of Sn4P3 and enlighten the material designs for improved performance.
Collapse
Affiliation(s)
- Shuting Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- School of New Energy, Ningbo University of Technology, Ningbo 315211, People's Republic of China
| | - Chen Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jianquan Liang
- Electric Power Research Institute, State Grid Heilongjiang Electric Power Co., Ltd., Harbin 150001, People's Republic of China
| | - Wenhui Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Ruhong Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, People's Republic of China
| | - Li Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Changsong Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
3
|
Zhao K, Yu H, Yang Q, Li W, Han F, Liu H, Zhang S. Emerging Yttrium Phosphides with Tetrahedron Phosphorus and Superconductivity under High Pressures. Chemistry 2021; 27:17420-17427. [PMID: 34609031 DOI: 10.1002/chem.202103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Metal phosphides have triggered growing interest for their exotic structures and striking properties. Hence, within advanced structure search and first-principle calculations, several unprecedented Y-P compounds (e. g., Y3 P, Y2 P, Y3 P2 , Y2 P3 , YP2 , and YP3 ) were identified under compression. Interestingly, as phosphorus content increases, P atoms exhibit diverse behaviors corresponding to standalone anion, dumbbell, zigzag chain, planar sheet, crossing chain-like network, buckled layer, three-dimensional framework, and wrinkled layer. Particularly, Fd-3m YP2 can be viewed as assemblage of diamond-like Y structure and rare vertex-sharing tetrahedral P4 units. Impressively, electron-phonon coupling (EPC) calculations elucidate that Pm-3m Y3 P possesses the highest superconducting critical temperature Tc of 10.2 K among binary transition metal phosphides. Remarkably, the EPC of Pm-3m Y3 P mainly arises from the contribution of low-frequency soft phonon modes, whereas mid-frequency phonon modes of Fd-3m YP2 dominate. These results strengthen knowledge of metal phosphides and pave a way for seeking superconductive transition metal phosphides.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qiuping Yang
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hanyu Liu
- International Center for Computational Method & Software and, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
| | - Shoutao Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
Duan C, Wang L, Liu J, Qu Y, Gao J, Yang Y, Wang B, Li J, Zheng L, Li M, Yin Z. 3D Carbon Electrode with Hierarchical Nanostructure Based on NiCoP Core‐Layered Double Hydroxide Shell for Supercapacitors and Hydrogen Evolution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cunpeng Duan
- School of Environmental Science and Engineering Tiangong University Tianjin 300387 China
| | - Lili Wang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Jianping Liu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Yuning Qu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Jian Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Yuying Yang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Bing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Jiahui Li
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Linlin Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University
| | - Mengzhu Li
- Beijing Institute of Aerospace Testing Technology Beijing 100048 China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology 29 13th Avenue, TEDA Tianjin 300457 China
| |
Collapse
|
5
|
Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Sci Bull (Beijing) 2021; 66:708-719. [PMID: 36654446 DOI: 10.1016/j.scib.2020.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Zinc-air batteries (ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides (TMPs) have been reported as promising electrocatalysts. Notably, (Ni1-xCrx)2P (0 ≤ x ≤ 0.15) is an unstable electrocatalyst, which undergoes in-situ electrochemical oxidation during the initial oxygen evolution reaction (OER) and even in the activation cycles, and is eventually converted to Cr-NiOOH serving as the actual OER active sites with high efficiency. Density functional theory (DFT) simulations and experimental results elucidate that the OER performance could be significantly promoted by the synergistic effect of surface engineering and electronic modulations by Cr doping and in-situ phase transformation. The constructed rechargeable ZnABs could stably cycle for more than 208 h at 5 mA cm-2, while the voltage degradation is negligible. Furthermore, the developed catalytic materials could be assembled into flexible and all-solid-state ZnABs to power wearable electronics with high performance.
Collapse
|
6
|
Khan MR, Bu K, Chai JS, Wang JT. Novel electronic properties of monoclinic MP 4 (M = Cr, Mo, W) compounds with or without topological nodal line. Sci Rep 2020; 10:11502. [PMID: 32661256 PMCID: PMC7359338 DOI: 10.1038/s41598-020-68349-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022] Open
Abstract
Transition metal phosphides hold novel metallic, semimetallic, and semiconducting behaviors. Here we report by ab initio calculations a systematical study on the structural and electronic properties of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {MP}_4$$\end{document}MP4 (M = Cr, Mo, W) phosphides in monoclinic C2/c (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{2h}^6$$\end{document}C2h6) symmetry. Their dynamical stabilities have been confirmed by phonon modes calculations. Detailed analysis of the electronic band structures and density of states reveal that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CrP}_4$$\end{document}CrP4 is a semiconductor with an indirect band gap of 0.47 eV in association with the p orbital of P atoms, while \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {MoP}_4$$\end{document}MoP4 is a Dirac semimetal with an isolated nodal point at the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma$$\end{document}Γ point and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {WP}_4$$\end{document}WP4 is a topological nodal line semimetal with a closed nodal ring inside the first Brillouin zone relative to the d orbital of Mo and W atoms, respectively. Comparison of the phosphides with group VB, VIB and VIIB transition metals shows a trend of change from metallic to semiconducting behavior from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {VB-MP}_4$$\end{document}VB-MP4 to VIIB-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {MP}_4$$\end{document}MP4 compounds. These results provide a systematical understandings on the distinct electronic properties of these compounds.
Collapse
Affiliation(s)
- Muhammad Rizwan Khan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Bu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Shuai Chai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
7
|
Wang H, Zhu Y, Zong Q, Wang Q, Yang H, Zhang Q. Hierarchical NiCoP/Co (OH)2 nanoarrays for high-performance asymmetric hybrid supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Zhu Y, Zong Q, Zhang Q, Yang H, Wang Q, Wang H. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.043] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|