1
|
Avagyan NA, Zonov RV, Lemport PS, Evsiunina MV, Matveev PI, Roznyatovsky VA, Averin AD, Kalle P, Tafeenko VA, Soloveva SA, Nelyubina YV, Petrov VG, Ustynyuk YA, Nenajdenko VG. Steric hindrance of phenanthroline diamides enables a hundredfold increase in Am(III) extraction efficiency. Dalton Trans 2025; 54:5425-5437. [PMID: 40029106 DOI: 10.1039/d5dt00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Three novel 1,10-phenanthroline-2,9-dicarboxamides (DAPhen) were prepared and investigated in detail. The presence of alkyl groups in the ortho-positions of the aryl substituent in the ligand amide functions results in completely inhibited rotation around the N-Ar bond and complicated conformational behavior. A very significant effect of ligand steric hindrance on the solvent extraction of lanthanides(III) and Am(III) from nitric acid solution was demonstrated. Extraction tests indicated that all three ligands L1-L3 extract Am better than all lanthanides. Very high separation factors of Am from early lanthanides (La and Ce) SFAm/La,Ce > 40 were observed. For all three ligands, the separation factors from all lanthanides are also high (SFAm/Ln > 10), which makes them suitable for practical applications in spent nuclear fuel (SNF) reprocessing. The extraction efficiency (distribution ratio) increases by almost two orders of magnitude for all tested f-elements while maintaining an overall extraction trend. Since the solvent extraction of Ln(III) and/or Am(III) involves the formation of corresponding complex compounds, a detailed investigation of the coordination chemistry of novel sterically hindered DAPhen ligands toward lanthanides and americium nitrates was performed. A combination of single-crystal X-ray analysis, spectral techniques and quantum-chemical calculations allowed us to explain the nearly hundredfold increase in Am(III) extraction efficiency when moving from ortho-methyl substituents toward more bulky ortho-isopropyl groups.
Collapse
Affiliation(s)
- Nane A Avagyan
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Roman V Zonov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Pavel S Lemport
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Mariia V Evsiunina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Vitaly A Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Alexei D Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninsky pr. 31, Moscow, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Svetlana A Soloveva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, 123592, Kulakova Str., 20, Moscow, Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Yuri A Ustynyuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia.
| |
Collapse
|
2
|
Wu S, Li AY. Theoretical investigations into the bonding and separation properties of non-rigid, partially rigid, and rigid ligands derived from Et-Tol-PTA with trivalent lanthanides and actinides. Phys Chem Chem Phys 2024; 26:2205-2217. [PMID: 38164958 DOI: 10.1039/d3cp04717b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The separation of trivalent actinide elements from lanthanide elements represents one of the most formidable challenges within the context of nuclear waste partitioning and transmutation (P&T) processes. Consequently, we embarked on a systematic investigation aimed at elucidating the bonding properties and thermodynamic behavior of a N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA) ligand in conjunction with trivalent actinide and lanthanide elements. This investigation involved the utilization of various density functional theory (DFT) methods and a comparative analysis between small-core pseudopotential basis sets and all-electron basis sets. It was found that well-performing results were achieved using the PBE0 functional in both bond length and thermodynamic energy calculations, with minimal impact being exerted by the basis set on the results. Furthermore, an exploration was carried out into the bonding and thermodynamic properties of trivalent actinides and lanthanides with ligands derived from Et-Tol-PTA, encompassing non-rigid (La), partially rigid (Lb, Lc), and rigid (Ld) ligands. Thermodynamically, advantages in the separation of Am(III)/Eu(III) were exhibited by Lb and Lc ligands, while excellent performance in the separation of Am(III)/Cm(III) was demonstrated by the La ligand. Analyses conducted using quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and natural bond orbital (NBO) methodologies revealed the presence of partial covalent character in the bonds between oxygen (O) and metal (M), as well as between nitrogen (N) and metal (M), with a higher degree of covalent character being observed in O-Am and N-Am bonds compared to O-Cm/Eu and N-Cm/Eu interactions.
Collapse
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
3
|
Wu S, Li AY. Theoretical investigation on the ligands constructed from phenanthroline and five-membered N-heterocyclic rings for bonding and separation properties of Am(III) and Eu(III). Phys Chem Chem Phys 2024; 26:1190-1204. [PMID: 38099645 DOI: 10.1039/d3cp05101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The ligands, derived from the combination of phenanthroline and various five-membered N-heterocyclic rings, were subject to a comprehensive investigation for their potential in the extraction and separation of actinides and lanthanides. This study employed DFT methods to thoroughly explore the properties of both phenanthroline (Ph) and the diverse five-membered N-heterocyclic rings (R1-R8). Additionally, tridentate ligands RlPh (l = 1-8) and tetradentate ligands RlPhRr (l, r = 1-8) were analyzed in detail, encompassing their electrostatic potential (ESP), protonation energy, coordination bonding with the metals Am(III) and Eu(III), and the thermodynamics of extraction separation for Am(III) and Eu(III). The findings highlight that the electrostatic potential (ESP) and binding capabilities of the five-membered N-heterocyclic ring units serve as effective predictors for the properties of intricate tridentate and tetradentate ligands, as well as their coordination bonding affinity with metals. The ligands' binding energy is closely associated with their ESP, and notably, the binding energy of tridentate and tetradentate ligands correlates well with the binding energies of their constituent structural units. The computational results reveal that the R2 unit, along with its corresponding tridentate ligand R2Ph and tetradentate ligands R2PhRr, exhibits the highest ESP, superior binding energies, and the strongest coordination bonding affinity with the metals. The theoretical calculations further identify several promising extractants for the effective separation of Am(III) and Eu(III). The tridentate ligands R1Ph, R7Ph, and R4Ph, and the tetradentate ligands R4PhR4, R6PhR6, R2PhR2, R1PhR5 and R3PhR6 were identified as having excellent separation performance for Am(III) and Eu(III). This study would provide insights for the design of extractants for the separation of Am(III) and Eu(III) by use of five-membered N-heterocyclic rings as structural units.
Collapse
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
4
|
Liang YT, Bai SQ, Zhang YY, Li AY. Theoretical Study on the Coordination and Separation Capacity of Macrocyclic N-Donor Extractants for Am(III)/Eu(III). J Phys Chem A 2023; 127:6865-6880. [PMID: 37583058 DOI: 10.1021/acs.jpca.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Designing ligands that can effectively separate actinide An(III)/lanthanide Ln(III) in the solvent extraction process remains one of the key issues in the treatment of accumulated spent nuclear fuel. Nitrogen donor ligands are considered as promising extractants for the separation of An(III) and Ln(III) due to their environmental friendliness. Four new macrocyclic N-donor hexadentate extractants were designed and their coordination with Am(III) and Eu(III), as well as their extraction selectivity and separation performance for Am(III) and Eu(III), were investigated by scalar relativistic density functional theory. A variety of theoretical methods have been used to evaluate the properties of the four ligands and the coordination structures, bonding properties, and thermodynamic properties of the complexes formed by the four ligands with Am(III) and Eu(III). The results of various wavefunction analysis methods including NBO analysis, quantum theory of atoms in molecules (QTAIM) analysis, and so on show that Am(III) has a stronger coordination ability with the ligands than Eu(III) due to the Am 5f orbitals more involved in bonding with the ligands than the Eu 4f orbitals, and the bonding environment of the N-donor in the ligand has a significant effect on its coordination ability of the metal ions. Thermodynamic analysis of the solvent extraction process shows that all of the four N-containing macrocyclic ligands have good extraction selectivity and separation performance for Am(III) and Eu(III). This study provides theoretical support for designing potential nitrogen-containing macrocyclic extractants with excellent separation performance.
Collapse
Affiliation(s)
- Yu Ting Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shan Qin Bai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Ying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Zhang M, Yang Z, Cui Y, Su J, Zhao H, Xu C, Liu X, Sun G, Peng X, Cui Y. Strategies for improving extraction capacity through preorganization structure: A novel 5, 6-bicyclicmalonamide extractant (THPPD). J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Wang YL, Li FF, Xiao Z, Wang CZ, Liu Y, Shi WQ, He H. Experimental and theoretical studies on the extraction behavior of Cf(iii) by NTAamide(C8) ligand and the separation of Cf(iii)/Cm(iii). RSC Adv 2023; 13:3781-3791. [PMID: 36756586 PMCID: PMC9890634 DOI: 10.1039/d2ra07660h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
In this work we studied the extraction behaviors of Cf(iii) by NTAamide (N,N,N',N',N'',N''-hexaocactyl-nitrilotriacetamide, C8) in nitric acid medium. Influencing factors such as contact time, concentration of NTAamide(C8), HNO3 and NO3 - as well as temperature were considered. The slope analysis showed that Cf(iii) should be coordinated in the form of neutral molecules, and the extraction complex should be Cf(NO3)3·2L (L = NTAamide(C8)), which can achieve better extraction effect under the low acidity condition. When the concentration of HNO3 was 0.1 mol L-1, the separation factor (SFCf/Cm) was 3.34. The extractant has application prospect to differentiate the trivalent Cf(iii) and Cm(iii) when the concentration of nitric acid is low. On the other hand, density functional theory (DFT) calculations were conducted to explore the coordination mechanism of NTAamide(C8) ligands with Cf/Cm cations. The NTAamide(C8) complexes of Cf(iii)/Cm(iii) have similar geometric structures, and An(iii) is more likely to form a complex with 1 : 2 stoichiometry (metal ion/ligands). In addition, bonding property and thermodynamics analyses showed that NTAamide(C8) ligands had stronger coordination ability with Cf(iii) over Cm(iii). Our work provides meaningful information with regard to the in-group separation of An(iii) in practical systems.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Feng-Feng Li
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Zhe Xiao
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui He
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| |
Collapse
|
7
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorg Chem 2022; 61:6110-6119. [PMID: 35416038 DOI: 10.1021/acs.inorgchem.2c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing ligands with efficient actinide (An(III))/lanthanide (Ln(III)) separation performance is still one of the key issues for the disposal of accumulated radioactive waste and the recovery of minor actinides. Recently, the hydrophilic ligands as promising extractants in the innovative Selective ActiNide Extraction (i-SANEX) process show excellent selectivity for Am(III) over Eu(III), such as hydroxylated-based ligands. In this work, we investigated the selective back-extraction toward Am(III) over Eu(III) with three hydrophilic hydroxylated triazolyl-based ligands (the skeleton of pyridine La, bipyridine Lb, and phenanthroline Lc) using scalar-relativistic density functional theory. The properties of three hydrophilic hydroxylated ligands and the coordination structures, bonding nature, and thermodynamic properties of the Am(III) and Eu(III) complexes with three ligands have been evaluated using multiple theoretical methods. The results of molecular orbitals (MOs), quantum theory of atoms in molecules (QTAIMs), and natural bond orbital (NBO) reveal that Am-N bonds possess more covalent character compared to Eu-N bonds. The thermodynamic results indicate that the complexing ability of Lb and Lc with metal ions is almost the same, which is stronger than that of La. However, La has the best Am(III)/Eu(III) selectivity among three ligands, which is attributed to the largest difference in covalency between Am-Ntrzl and Eu-Ntrzl bonds in MLa(NO3)3. This work provides an in-depth understanding of the preferential selectivity of the hydrophilic hydroxylated ligands with An(III) over Ln(III) and also provides theoretical support for designing potential hydrophilic ligands with excellent separation performance of Am(III)/Eu(III).
Collapse
Affiliation(s)
- Zi-Rong Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Mutual separation of trivalent americium and curium using the BCPDTPA/XAD-7 composite sorbent with pure nitric acid solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Huang PW, Wang CZ, Wu QY, Lan JH, Chai ZF, Shi WQ. Enhancing the Am 3+/Cm 3+ separation ability by weakening the binding affinity of N donor atoms: a comparative theoretical study of N, O combined extractants. Dalton Trans 2021; 50:3559-3567. [PMID: 33605961 DOI: 10.1039/d0dt04266h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutual separation of trivalent americium (Am3+) and curium (Cm3+) ions through liquid-liquid extraction is challenging due to the similarity in their chemical properties. Three N, O combined extractants 2,6-pyridinedicarboxylic acid di(N-ethyl-4-fluoroanilide) (Et(pFPh)DPA), diphenyl(2-pyridyl)phosphine oxide (Ph2PyPO), and alkyldiamide amine with 2-ethylhexylalkyl chains (ADAAM(EH)) have been identified to exhibit selectivity for Am3+ over Cm3+. In this work, the structures, bonding nature, and thermodynamic behaviors of a series of representative Am- and Cm-complexes with these ligands have been systematically investigated using density functional theory (DFT) calculations. Based on our calculations, the ONO angle formed by three donor atoms of the ligand in the Am-complex is slightly larger than that in its Cm-analogue. The studied ligands show their preference toward Am3+ by opening their "mouths" slightly wider. According to the Mayer bond order and the quantum theory of atoms in molecules (QTAIM) analyses, the interactions between the O donor atoms of these ligands and Am3+ and Cm3+ ions show some weak partial covalent character, and compared to the Am-O bond, there is relatively more covalency in the Cm-O bond in the corresponding complex. However, opposite results can be found in the Am-N and Cm-N bonding for the first two ligands. Particularly, for the better separation ligand ADAAM(EH), the Am-N and Cm-N interactions are extremely weak and no covalent character exists in the bonding. Nevertheless, the difference between the very weak Am-N and Cm-N interactions still leads to a better performance of ADAAM(EH). Based on the comparison of these ligands, we can find that weakening the binding ability of N atoms in the ligand may increase the difference between the Am-N and Cm-N interactions, thus enhancing the Am3+/Cm3+ separation ability of the ligand. Our study might provide new insights into understanding the selectivity of these three N, O combined ligands toward minor actinides and pave the way for designing efficient Am3+/Cm3+ extraction and separation ligands.
Collapse
Affiliation(s)
- Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. and Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Theoretical insights into chiral PMAADs coordinated with Am(III)/Eu(III) and separation selectivity enhanced by chiral-at Am(III)/Eu(III) complexes. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Matveev P, Mohapatra PK, Kalmykov SN, Petrov V. Solvent extraction systems for mutual separation of Am(III) and Cm(III) from nitric acid solutions. A review of recent state-of-the-art. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1856998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Petr Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Stepan N. Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Kaneko M, Sasaki Y, Matsumiya M, Nakase M, Takeshita K. Density functional modeling of Am3+/Eu3+ selectivity with diethylenetriaminepentaacetic acid and its bisamide chelates. J NUCL SCI TECHNOL 2020. [DOI: 10.1080/00223131.2020.1842267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Yuji Sasaki
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Masahiko Matsumiya
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Masahiko Nakase
- Fukushima Reconstruction and Revitalization Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Kenji Takeshita
- Fukushima Reconstruction and Revitalization Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
13
|
Complexation of trivalent lanthanides and actinides with diethylenetriaminepentaacetic acid: Theoretical unraveling of bond covalency. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Huang PW, Wang CZ, Wu QY, Lan JH, Chai ZF, Shi WQ. Quantum chemical studies of selective back-extraction of Am(III) from Eu(III) and Cm(III) with two hydrophilic 1,10-phenanthroline-2,9-bis-triazolyl ligands. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
We theoretically investigated the selective back-extraction towards Am(III) over Eu(III) and Cm(III) with two water-soluble 2,9-bis-triazolyl-1,10-phenanthroline derivatives BTrzPhen1 (with two ethanol side chains) and BTrz-Phen2 (with two 1,2-butanediol side chains) by density functional theory (DFT). The molecular geometries and formation reactions of the metal-ligand complexes were modeled by using M(BTrzPhen)(NO3)3 and [M(BTrzPhen)2(NO3)]2+. Am(III) selectivity over Eu(III) and Cm(III) with BTrzPhen2 was successfully reproduced by back-extraction reaction free energy analysis. Moreover, bonding properties between the metal cations and coordinated ligands (model complexes) were studied in terms of Mayer bond order and quantum theory of atoms in molecule (QTAIM). The difference in covalency between An–N and Eu–N bonds were found to be the key factors for Am(III)/Eu(III) separation, while the Am(III) selectivity over Cm(III) of BTrzPhen2 might be attributed to the competition of donor atoms for cation binding preference toward Am(III) and Cm(III).
Collapse
Affiliation(s)
- Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power , Hangzhou, Zhejiang 310018 , China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology , Chinese Academy of Sciences , Ningbo, Zhejiang 315201 , China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
15
|
Kaneko M, Kato A, Nakashima S, Kitatsuji Y. Density Functional Theory (DFT)-Based Bonding Analysis Correlates Ligand Field Strength with 99Ru Mössbauer Parameters of Ruthenium–Nitrosyl Complexes. Inorg Chem 2019; 58:14024-14033. [DOI: 10.1021/acs.inorgchem.9b02024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Akane Kato
- Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Nakashima
- Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yoshihiro Kitatsuji
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| |
Collapse
|
16
|
Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3064] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Separation of trivalent actinide (An) and lanthanide (Ln) elements is one of the burning topics in the back end of the nuclear fuel cycle due to the similarity in their chemical behaviour. A significant amount of research is being carried out worldwide to develop suitable ligands for the separation of the trivalent actinides and lanthanides. Some of the research groups are engaged in continuous improvement of the di-ethylene-triamine-penta acetic acid (DTPA) based Ln/An separation method, whereas extensive research is going on for the development of the lipophilic and hydrophilic ‘N’ donor heteropolycyclic ligands as the actinide selective ligand. A number of ‘S’ donor ligands are also explored for the Ln/An separation. In the present review, we made an attempt to highlight various separation processes based on soft donor ligands developed for Ln/An separations. Beside the conventional solvent extraction processes, separation possibilities membrane based and solid phase extraction techniques are evaluated for the Ln/An separation and are compiled in the present review.
Collapse
|