1
|
Zhang H, Liu B, Jin W, Xiong Z, Yang A, Guo P, Wang R, Zhang Z. Ultra-thin C/Si Shell Pieces as Amphiphilic Janus Materials for Efficient Oxidation Desulfurization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406137. [PMID: 39526501 DOI: 10.1002/smll.202406137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Indexed: 11/16/2024]
Abstract
Constructing favorable morphology is considered to be an effective strategy to enhance the amphiphilic performance of materials. The directional alignment of ultra-thin lamellar materials significantly facilitates utilization of active sites at the bi-phase interface. Herein, an ultra-thin amphiphilic C/Si shell pieces Janus material (d = 10.4 nm) prepared by graphene oxide and SiO2 is reported. The outer SiO2 layer is associated with hydrophilicity, while the inner C layer exhibits hydrophobicity. A Pickering emulsion interface catalyst for fuel oil oxidative desulfurization is constructed by impregnating an amino-modified C/Si Janus material with keggin-type HPW. The results demonstrate that amphiphilic catalyst with an ultra-thin C/Si shell pieces exhibits superior performance in terms of emulsification rate (100%) and desulfurization rate (99.62%) in the O/W emulsion formed by n-octane/acetonitrile. The catalyst demonstrates the advantages of easy recovery and regeneration, maintains a higher activity after oxidative desulfurization (ODS) process, and has higher industrial application value.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bolun Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenhui Jin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zeshan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Aili Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Pengyu Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zongtao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Ye G, Shi G, Wang H, Zeng X, Wu L, Zhou J, Zhang Q, Wei J, Li Z, Nie L, Wang J. In Situ Implanting ZrW 2O 7(OH) 2(H 2O) 2 Nanorods into Hierarchical Functionalized Metal-Organic Framework via Solvent-Free Approach for Upgrading Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311249. [PMID: 38482932 DOI: 10.1002/smll.202311249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Indexed: 08/09/2024]
Abstract
Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2O7(OH)2(H2O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2, and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2O2 to WVI-peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Guangming Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlu Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Xingye Zeng
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinshan Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Long Nie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Qu W, Wei P, Li J, Liang L, Ma L, Li G. Self-assembly of Dawson-type H 6P 2W 18O 62@[Cu 6O(TZI) 3(H 2O) 6] 4 for high-performance aerobic oxidation desulfurization of fuel. Dalton Trans 2024; 53:12610-12619. [PMID: 39010721 DOI: 10.1039/d4dt01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Because global sulfur emission has escalated, the development of high-efficiency deep desulfurization techniques has become imperative. Herein, to design a high-activity heterogeneous catalyst for the aerobic oxidation desulfurization (AODS) of fuel, Dawson-type polyoxometalate (H6P2W18O62 abbreviated as D-P2W18), characterized by its high activity and strong oxidative capacity, was applied to react with CuCl2·2H2O and H3TZI via a one-pot hydrothermal method. Consequently, blue crystalline H6P2W18O62@[Cu6O(TZI)3(H2O)6]4 (abbreviated as D-P2W18@rht-MOF-1; rht-MOF-1 = [Cu6O(TZI)3(H2O)6]4·nH2O) was afforded. X-ray diffraction analysis indicated that D-P2W18 was successfully encapsulated in two different cages of rht-MOF-1, which is distinct from the crystal structure of Keggin-type POMs@rht-MOF-1. It represents the first crystal structure of Dawson-type POMs@rht-MOF-1. When D-P2W18@rht-MOF-1 was employed as a catalyst for AODS under ambient oxygen pressure with the assistance of surfactant dioctadecyl dimethyl ammonium chloride (DODMAC), it demonstrated remarkable catalytic capability and recyclability for both model fuel and commercial diesel. Further, the AODS reaction mechanism, identified as a free radical oxidation-reduction process, was verified by way of radical quenching experiments, EPR and XPS analysis. This approach offers a feasible route for the synthesis of new Dawson-type POMs@MOFs of heterogeneous catalysts for highly active AODS of fuel.
Collapse
Affiliation(s)
- Wenjia Qu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Pengpeng Wei
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Liye Liang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Liqiang Ma
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| |
Collapse
|
4
|
Zhang Y, Li C, Shu L, Teng YL, Dong BX. Research on the Construction of a Series of Transition Metal-Substituted Keggin-Type TMSPOMs@PCN-224 Composites through the Encapsulation Method and Their Electron Transfer Mechanism in CO 2RR. Inorg Chem 2024; 63:11592-11603. [PMID: 38861349 DOI: 10.1021/acs.inorgchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In order to take advantage of the distinct reversible multielectron transfer properties of polyoxometalates (POMs) and increase the electron density at the active sites during the electrochemical reduction of CO2 (CO2RR), a range of transition metal-doped polyoxometalates (TMSPOMs) was entrapped within the porphyrin-based framework of PCN-224 via an encapsulation method, known as TMSPOMs@PCN-224 (TMSPOMs = [XW11O39MII(H2O)]n-, [XW11O40VIV]n-, M = CoII, MnII; X = Si, n = 6; X = P, n = 5). The central elements (Si, P) and the incorporated transition metals (VIV, CoII, and MnII) both play a role in adjusting the electronic structure and electron transfer during the CO2RR process. Remarkably, the composite material with cobalt substitution displayed significantly improved performance. Through fine-tuning the POM loading, the electrocatalytic activity was optimized, leading to an impressive Faradaic efficiency for CO production (FECO) of 89.9% for SiW11Co@PCN-224, a significant improvement compared to the 12.1% FECO of PCN-224. Furthermore, the electrochemical stability of this catalyst was demonstrated over 20 h. Comparative analyses involving six composite materials indicated a relationship between the negative charge of the polyanions and their ability to facilitate effective electron transfer, ultimately enhancing the catalyst's performance. Meanwhile, these findings were supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Can Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Lei Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Yun-Lei Teng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Bao-Xia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
5
|
Ferreira CES, Santos-Vieira I, Gomes CR, Balula SS, Cunha-Silva L. Porous Coordination Polymer MOF-808 as an Effective Catalyst to Enhance Sustainable Chemical Processes. Polymers (Basel) 2024; 16:968. [PMID: 38611226 PMCID: PMC11013575 DOI: 10.3390/polym16070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The improvement of sustainable chemical processes plays a pivotal role in safe environmental and societal development, for example, by reducing the use of hazardous substances, preventing chemical waste, and improving the efficiency of chemical reactions to obtain added-value compounds. In this context, the porous coordination polymer MOF-808 (MOF, metal-organic framework) was prepared by a straightforward method in water, at room temperature, and was unequivocally characterized by powder X-ray diffraction, vibrational spectroscopy, thermogravimetric analysis, and scanning electron microscopy. MOF-808 material was applied for the first time as catalysts in ring-opening aminolysis reactions of epoxides. It demonstrated high activity and selectivity for reactions of styrene oxide and cyclohexene oxide with aniline, using a very low amount of an eco-sustainable solvent (0.5 mL of EtOH), at 70 °C. Moreover, MOF-808 demonstrated high stability in the catalytic reaction conditions applied, and a notable reuse capacity of up to 20 consecutive reaction cycles, without significant variation in its catalytic performance. In fact, this Zr-based porous coordination polymer prepared by environment-friendly conditions proved to be a novel efficient heterogeneous catalyst, promoting the ring-opening reaction of epoxides under more sustainable conditions, and using a very low amount of catalyst.
Collapse
Affiliation(s)
- Catarina E. S. Ferreira
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Santos-Vieira
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos R. Gomes
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental & Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Wu X, Zhang H, Zhang X, Guan Q, Tang X, Wu H, Feng M, Wang H, Ou R. Sustainable lithium extraction enabled by responsive metal-organic frameworks with ion-sieving adsorption effects. Proc Natl Acad Sci U S A 2024; 121:e2309852121. [PMID: 38306476 PMCID: PMC10861930 DOI: 10.1073/pnas.2309852121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024] Open
Abstract
Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.
Collapse
Affiliation(s)
- Xu Wu
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC3000, Australia
| | - Xinyu Zhang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Qian Guan
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Xiaocong Tang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Hao Wu
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| | - Mingbao Feng
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC3800, Australia
| | - Ranwen Ou
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| |
Collapse
|
7
|
Ping Y, Zong MY, Zhao Z, Wang CJ, Wang DH. Introducing VO 2+ Group in Phosphomolybdic Acid and Supporting on MOF-808 for Efficient Oxidative Desulfurization. ACS OMEGA 2023; 8:37421-37430. [PMID: 37841163 PMCID: PMC10568600 DOI: 10.1021/acsomega.3c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Herein, by introducing a VO2+ group into the microstructure of phosphomolybdenic acid (PMA) and loading it onto MOF-808, a series of composite catalysts were obtained by reducing the V element with Vitamin C (ascorbic acid). V atoms exist in the secondary structural units of phosphomolybdic acid as [VO(H2O)5]H[PMo12O40]. Surprisingly, the VC-VO-PMA/MOF-808 completely removed DBT and 4,6-DMDBT from the simulated oil in 12 min. The EPR and XPS results verify the electronic structure and valence state of V4+ in the composites. The oxygen vacancy and V4+ generated by VC modification in VC-VO-PMA/MOF-808 have positive effects on the oxidation desulfurization (ODS) activity. Based on the design of the microstructure and electronic structure, this study provides a new paradigm for the development of readily available and efficient ODS catalysts.
Collapse
Affiliation(s)
- Yi Ping
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng-Ya Zong
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Zhao
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan-Jiao Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan-Hong Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Haruna A, Merican ZMA, Musa SG. Remarkable stability and catalytic performance of PW11M@MOF-808 (M=Mn and Cu) nanocomposites for oxidative desulfurization of fuel oil. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
10
|
Design of hierarchically porous Zr-MOFs with reo topology and confined PMA for ultra-efficient oxidation desulfurization. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Wang Q, Wang H, Zhong J, Qi Z, Chen J, Ye C, Qiu T. Novel High-Activity Al 2O 3@Zr XPTA Catalysts and Their Catalytic Oxidative Desulfurization, Mechanism, and Molding. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qinglian Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Huaiyu Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Jintian Zhong
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Zhaoyang Qi
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Changshen Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| | - Ting Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, Fujian, P. R. China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou350108, Fujian, P. R. China
| |
Collapse
|
12
|
Two silver–containing polyoxometalate–based inorganic–organic hybrids as heterogeneous bifunctional catalysts for construction of C–C bonds and decontamination of sulfur mustard simulant. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zirconium‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022; 61:e202205077. [DOI: 10.1002/anie.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geqian Fang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jin‐Nian Hu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Ling‐Chan Tian
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
14
|
Fernandes S, Flores D, Silva D, Santos-Vieira I, Mirante F, Granadeiro CM, Balula SS. Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2887. [PMID: 36014754 PMCID: PMC9414597 DOI: 10.3390/nano12162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 05/14/2023]
Abstract
An effective and sustainable oxidative desulfurization process for treating a multicomponent model fuel was successfully developed using as a heterogeneous catalyst a composite material containing as an active center the europium Lindqvist [Eu(W5O18)2]9- (abbreviated as EuW10) encapsulated into the nanoporous ZIF-8 (zeolitic imidazolate framework) support. The EuW10@ZIF-8 composite was obtained through an impregnation procedure, and its successful preparation was confirmed by various characterization techniques (FT-IR, XRD, SEM/EDS, ICP-OES). The catalytic activity of the composite and the isolated EuW10 was evaluated in the desulfurization of a multicomponent model fuel containing dibenzothiophene derivatives (DBT, 4-MDBT and 4,6-DMDBT) with a total sulfur concentration of 1500 ppm. Oxidative desulfurization was performed using an ionic liquid as extraction solvent and aqueous hydrogen peroxide as oxidant. The catalytic results showed a remarkable desulfurization performance, with 99.5 and 94.7% sulfur removal in the first 180 min, for the homogeneous active center EuW10 and the heterogeneous EuW10@ZIF-8 catalysts, respectively. Furthermore, the stability of the nanocomposite catalyst was investigated by reusing and recycling processes. A superior retention of catalyst activity in consecutive desulfurization cycles was observed in the recycling studies when compared with the reusing experiments. Nevertheless, the nanostructure of ZIF-8 incorporating the active POM (polyoxometalate) was shown to be highly suitable for guaranteeing the absence of POM leaching, although structural modification was found for ZIF-8 after catalytic use that did not influenced catalytic performance.
Collapse
Affiliation(s)
- Simone Fernandes
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniela Flores
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Santos-Vieira
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Mirante
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carlos M. Granadeiro
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zr‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Geqian Fang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jinnian Hu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Lingchan Tian
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jinxia Liang
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jian Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Lin Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Chun Zhu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Zhongshan Road 457, Dalian, China 116023 Dalian CHINA
| |
Collapse
|
16
|
Tugrul Albayrak A, Tavman A. Sono-oxidative desulfurization of fuels using heterogeneous and homogeneous catalysts: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2022; 83:105845. [PMID: 35151195 PMCID: PMC8841374 DOI: 10.1016/j.ultsonch.2021.105845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Recently, environmental pollution has increased significantly due to petroleum-based fuels widely used in vehicles. This environmental pollution is mainly due to the acidic SO2 gas generated by the combustion of fuels and emitted into the atmosphere. SO2 gas causes not only acid rain but also corrosion of metal parts of engines in vehicles. In addition, it functions as a catalyst poison in catalytic converters in exhaust system. Due to these damages, strict regulations have been introduced to reduce the amount of sulfur in fuels. As of 2005, the permissible amount of sulfur in diesel fuels in Europe and America has been limited to 10 and 15 ppm by weight, respectively. Due to the decreasing oil reserves in the world, high viscosity petroleums containing high sulfur and heavier fractions (i.e., low-quality oils) are increasing, thus making desulfurization difficult and leading to high costly process. Since time and economic loss are very important today, these two terms have to be reduced to a minimum. Recently, ultrasound wave in ODS shown as an alternative to HDS is utilized to further increase desulfurization in shorter times. Ultrasound wave locally creates high temperatures and high pressures (hot-spot theory) in liquid, causing the desulfurization reaction to accelerate further. In this review, the advantages and difficulties of oxidative desulfurization, the economics of ultrasound-assisted oxidative desulfurization are summarized and recommendations for improving the process are presented.
Collapse
Affiliation(s)
- Ali Tugrul Albayrak
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey.
| | - Aydin Tavman
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
17
|
Oxidative desulfurization of liquid fuels catalyzed by W2C@C derived from metallophthalocyanine/phosphotungstic acid composites. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zhong J, Qi Z, Liu Y, Zhu Y, Chen J, Ye C, Qiu T. Preparation of Zr-Based Phosphotungstic Acid Catalyst, ZrPTAX-BTC, and Its Application in Ultradeep and Fast Oxidative Desulfurization of Fuels. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jintian Zhong
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Zhaoyang Qi
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Yiyan Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Yixi Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Jie Chen
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
| | - Changshen Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Ting Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
- Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes, Fuzhou University, Fuzhou, Fujian 350108, PR China
| |
Collapse
|
19
|
Chu L, Guo J, Wang L, Liu H, Yan J, Wu L, Yang M, Wang G. Synthesis of defected UIO‐66 with boosting the catalytic performance via rapid crystallization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Liang Chu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Junzhen Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Liyan Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Huiyang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Jiamin Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Lingmei Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Mu Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
20
|
Advances in Oxidative Desulfurization of Fuel Oils over MOFs-Based Heterogeneous Catalysts. Catalysts 2021. [DOI: 10.3390/catal11121557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Catalytic oxidative desulfurization (ODS) of fuel oils is considered one of the most promising non-hydrodesulfurization technologies due to the advantages of mild reaction conditions, low cost and easy removal of aromatic sulfur compounds. Based on this reason, the preparation of highly efficient ODS catalysts has been a hot research topic in this field. Recently, metal-organic frameworks (MOFs) have attracted extensive attention due to the advantages involving abundant metal centers, high surface area, rich porosity and varied pore structures. For this, the synthesis and catalytic performance of the ODS catalysts based on MOFs materials have been widely studied. Until now, many research achievements have been obtained along this direction. In this article, we will review the advances in oxidative desulfurization of fuel oils over MOFs-based heterogeneous catalysts. The catalytic ODS performance over various types of catalysts is compared and discussed. The perspectives for future work are proposed in this field.
Collapse
|
21
|
Wu P, Sun Y, Chen L, Jia Q, He J, Ma W, Lu L, Chao Y, Fan L, Zhu W. Heteroatom Bridging Strategy in Carbon-Based Catalysts for Enhanced Oxidative Desulfurization Performance. Inorg Chem 2021; 61:633-642. [PMID: 34915701 DOI: 10.1021/acs.inorgchem.1c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon-based catalysts are found to be promising metal-free species for aerobic oxidative desulfurization of fuel oil. Thus, a proper approach to promote their catalytic performances is very much in demand. In this contribution, a heteroatom bridging strategy is proposed to enhance the catalytic activities of carbon-based catalysts. As proof of the strategy, a series of boron (B)-doped graphite catalysts were synthesized. Detailed characterizations showed that the hetero-B atoms were uniformly dispersed in graphite. More importantly, it was found that the doped B atoms functioned as a bridge for electron transfer. With the existence of the heteroatom bridge, the activation of oxygen by graphite during the catalytic oxidation process was enhanced remarkably, leading to an ultradeep oxidative desulfurization performance. Moreover, the catalyst can be readily recycled five times without a significant decrease in desulfurization performance.
Collapse
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Yang Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Linlin Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Qingdong Jia
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Wenhui Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Yanhong Chao
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
22
|
Li H, Xu X, Tang Z, Zhao J, Chen L, Yang GY. Three Lanthanide-Functionalized Antimonotungstate Clusters with a {Sb 4O 4Ln 3(H 2O) 8} Core: Syntheses, Structures, and Properties. Inorg Chem 2021; 60:18065-18074. [PMID: 34797058 DOI: 10.1021/acs.inorgchem.1c02679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three lanthanide (Ln)-functionalized antimonotungstate (AT) clusters with a {Sb4O4Ln3(H2O)8} core [H2N(CH3)2]14Na8H16[Sb4O4Ln3(H2O)8W2O4(H2O)2(B-α-SbW9O33)4]2·87H2O [Ln = Dy3+ (1), Ho3+ (2), Y3+ (3)] were synthesized in an acidic aqueous solution. Their molecular structural unit comprises two {Sb4O4Ln3(H2O)8}-core-incorporated tetrameric [Sb4O4Ln3(H2O)8W2O4(H2O)2 (B-α-SbW9O33)4]19- polyanionic units, each of which is assembled from an unprecedented [Sb4O4Ln3(H2O)8W2O4(H2O)2]17+ heteroatom cluster surrounded by four trivacant [B-α-SbW9O33]9- subunits. What is noteworthy is that a tetrahedral {Sb4O4} cluster is located at the center of the polyanionic unit, as far as we know, which is very infrequent in multi-Ln-functionalized polyoxometalate chemistry. Solid-state luminescent properties and energy migration of AT ligands to Dy3+ and Ho3+ cations in 1 and 2 have been intensively probed at ambient temperature. By varying the exciting wavelength from 250 to 450 nm, the emitting color could vary from blue to yellow for 1 and blue to green-yellow for 2, separately. In addition, high catalytic activities and good reusability of 2 as a heterogeneous catalyst for oxygenation reaction of sulfides have been systematically performed.
Collapse
Affiliation(s)
- Hailou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.,MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
23
|
Li HL, Lian C, Yang GY. A {Ti 6W 4}-Cluster-Substituted Polyoxotungstate: Synthesis, Structure, and Catalytic Oxidation Properties. Inorg Chem 2021; 60:14622-14628. [PMID: 34533302 DOI: 10.1021/acs.inorgchem.1c01643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel Ti-W-O-cluster-substituted tungstoantimonate (TA), [H2N(CH3)2]3Na4H9[{Ti6W4O18(OH)(H2O)3}(B-α-SbW9O33)3]·20H2O (1), has been made by hydrothermal reactions of trivacant [B-α-SbW9O33]9- units, Ti4+ cations, and WO42- anions in the presence of [H2N(CH3)2]·Cl and structurally characterized. Intriguingly, the polyoxoanion of 1 is constructed from three [B-α-SbW9O33]9- units and a previously unobserved decanuclear heterometallic Ti-W-O cluster [Ti6W4O18(OH)(H2O)3]11+ ({Ti6W4}) that is comprised of an octahedral [Ti6WO6(H2O)3]18+ cluster and an edge-sharing [W3O12(OH)]7- fragment via six W-O-Ti/W linkers. Furthermore, studies on the catalytic oxidation properties reveal that 1 possesses good catalytic activity toward the oxidation reactions of various sulfides and cyclooctene based on the environmentally friendly oxidant H2O2.
Collapse
Affiliation(s)
- Hai-Lou Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chen Lian
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
24
|
Niu Q, Jin M, Liu G, Lv Z, Si C, Han H. Bilayer MOF@MOF and MoO species functionalization to access prominent stability and selectivity in cascade-selective biphase catalysis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ye G, Wang H, Chen W, Chu H, Wei J, Wang D, Wang J, Li Y. In Situ Implanting of Single Tungsten Sites into Defective UiO-66(Zr) by Solvent-Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angew Chem Int Ed Engl 2021; 60:20318-20324. [PMID: 34121275 DOI: 10.1002/anie.202107018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Design of single-site catalysts with catalytic sites at atomic-scale and high atom utilization, provides new opportunities to gain superior catalytic performance for targeted reactions. In this contribution, we report a one-pot green approach for in situ implanting of single tungsten sites (up to 12.7 wt.%) onto the nodes of defective UiO-66(Zr) structure via forming Zr-O-W bonds under solvent-free condition. The catalysts displayed extraordinary activity for the oxidative removal of sulfur compounds (1000 ppm S) at room temperature within 30 min. The turnover frequency (TOF) value can reach 44.0 h-1 at 30 °C, which is 109.0, 12.3 and 1.2 times higher than that of pristine UiO-66(Zr), WO3 , and WCl6 (homogeneous catalyst). Theoretical and experimental studies show that the anchored W sites can react with oxidant readily and generate WVI -peroxo intermediates that determine the reaction activity. Our work not only manifests the application of SSCs in the field of desulfurization of fuel oil but also opens a new solvent-free avenue for fabricating MOFs based SSCs.
Collapse
Affiliation(s)
- Gan Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hanlu Wang
- College of Chemical Engineering, Guangdong University of, Petrochemical Technology, Maoming, 525000, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced, Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongqi Chu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinshan Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dagang Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Ye G, Wang H, Chen W, Chu H, Wei J, Wang D, Wang J, Li Y. In Situ Implanting of Single Tungsten Sites into Defective UiO‐66(Zr) by Solvent‐Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gan Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Hanlu Wang
- College of Chemical Engineering Guangdong University of, Petrochemical Technology Maoming 525000 China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced, Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hongqi Chu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Jinshan Wei
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dagang Wang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Jin Wang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Zhang B, Li X, Chen J, Liu T, Cruz A, Pei Y, Chen M, Wu X, Huang W. Tandem Synthesis of ϵ‐Caprolactam from Cyclohexanone by an Acidified Metal‐organic Framework. ChemCatChem 2021. [DOI: 10.1002/cctc.202100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Biying Zhang
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Xinle Li
- Department of Chemistry Clark Atlanta University Atlanta GA 30314 USA
| | - Jingwen Chen
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Tianqing Liu
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Andrew Cruz
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Minda Chen
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Xun Wu
- Department of Chemistry Iowa State University Ames IA 50011 USA
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames IA 50011 USA
- Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| |
Collapse
|
28
|
Taheri M. WITHDRAWN: Dicationic ionic liquid-phosphotungstate cross-linked immobilized on chitosan as hybrid catalyst for solvent-free cyclohexane oxidation using molecular oxygen. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Li J, Zhao S, Li Z, Liu D, Chi Y, Hu C. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Inorg Chem 2021; 60:7785-7793. [PMID: 33755456 DOI: 10.1021/acs.inorgchem.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Shuaiheng Zhao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhen Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Dan Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
30
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Jia S, Song S, Zhao X. Selective adsorption and separation of dyes from aqueous solution by a zirconium‐based porous framework material. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shifang Jia
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| | - Sufang Song
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| | - Xudong Zhao
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| |
Collapse
|
33
|
Wu G, Wang Z, Li X, Zhang G, He F, Zhang H. A series of novel nanofiber materials with excellent performance in desulfurization under mild conditions based on BW11 and ZrO2. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Abstract
A novel tetrahedral μ-AsO4-bridging hexadecanuclear Ni-substituted silicotungstate (ST) Na21H10[(AsO4){Ni8(OH)6(H2O)2(CO3)2(A-α-SiW9O34)2}2]·60H2O (1) was made by the reactions of trivacant [A-α-SiW9O34]10- ({SiW9}) units with Ni2+ cations and Na3AsO4·12H2O and characterized by IR spectrometry, elemental analysis, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). 1 contains a novel polyoxoanion [(AsO4){Ni8(OH)6(H2O)2(CO3)2(A-α-SiW9O34)2}2]31- built by four trivacant Keggin [A-α-SiW9O34]10- fragments linked through an unprecedented [(AsO4){Ni8(OH)6(H2O)2(CO3)2}2]9+ cluster, where the tetrahedral AsO4 acts as an exclusively μ2-bridging unit to link multiple Ni centers; such a connection mode appears for the first time in polyoxometalate chemistry. Furthermore, the electrochemical and catalytic oxidation properties of compound 1 have been investigated.
Collapse
Affiliation(s)
- Chen Lian
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hai-Lou Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
35
|
Li J, Liu Z, Hu G, Gao R, Zhang R, Zhao J. Heteropolyacids supported on micro/mesoporous materials PMoW@HKUST-1@ZSM-5-MCM-41: Effective catalyst for oxidative desulfurization with oxygen. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
37
|
He F, Zhang H, Li X, Yang J, Ma W, Zhang H. Size-matched polyoxometalate encapsulated in UiO-66(Zr): an extraordinary catalyst with double active sites for the highly efficient ultra-deep oxidative desulfurization of fuel oil. NEW J CHEM 2021. [DOI: 10.1039/d1nj03283f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, for the first time, we selected a size-matched polyoxometalate α-Mo8O26, and successfully prepared Mo8-UiO-66(Zr) as a catalyst with double active sites for extractive and catalytic oxidative desulfurization systems (ECODS).
Collapse
Affiliation(s)
- Fangyuan He
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Heyi Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xiaonan Li
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Jie Yang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Wenqing Ma
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
38
|
In situ bridging encapsulation of a carboxyl-functionalized phosphotungstic acid ionic liquid in UiO-66: A remarkable catalyst for oxidative desulfurization. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Jarrah A, Farhadi S. Preparation and characterization of novel polyoxometalate/CoFe 2O 4/metal-organic framework magnetic core-shell nanocomposites for the rapid removal of organic dyes from water. RSC Adv 2020; 10:39881-39893. [PMID: 35515376 PMCID: PMC9057400 DOI: 10.1039/d0ra04603e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/17/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, the MIL-101(Cr) metal–organic framework was functionalized with a Dowson-type polyoxometalate (P2W18O626−; POM) and magnetic spinel cobalt ferrite (CoFe2O4; CFO) through a hydrothermal route and was characterized by means of FT-IR, XRD, FE-SEM, EDX, BET, and VSM measurements. All analyses confirmed the successful encapsulation of POM (∼32.2 wt%) into the magnetic MIL-101(Cr) framework. Compared to the pristine MIL-101(Cr) MOF, the as-prepared magnetic ternary nanocomposite (abbreviated as POM/CFO/MIL-101(Cr)) demonstrated a notable decrease in both the surface area and pore volume because of the incorporation of CoFe2O4 nanoparticles and huge P2W18O626− polyanions into the cages of the MIL-101(Cr) framework. The POM/CFO/MIL-101(Cr) was then applied as a magnetically separable adsorbent for the rapid elimination of rhodamine B (RhB), methyl orange (MO), and methylene blue (MB) dye pollutants from aqueous solutions. For achieving the optimized conditions, the effects of initial pH, initial dye concentration, temperature, salt effect, and adsorbent dose on MB and RhB elimination were investigated. The dye adsorption isotherms followed the Langmuir model and pseudo-second-order kinetic model. The POM/CFO/MIL-101(Cr) composite material not only exhibited a fast adsorption rate towards dye molecules, but also demonstrated the selective adsorption of the cationic dyes in wastewater. The recycling experiments also demonstrated that the POM/CFO/MIL-101(Cr) adsorbent was highly stable and could be quickly recovered under a magnetic field without any alteration in the structure. The high adsorption capacity, simple fabrication method, rapid separation by a magnet and supreme reusability of the POM/CFO/MIL-101(Cr) nanocomposite make it an attractive adsorbent for the elimination of cationic dyes from wastewater. The magnetic CoFe2O4/MIL-101 (Cr) metal–organic framework nanocomposite containing P2W18O626− polyoxometalate was fabricated and applied as an ultrafast adsorbent to remove organic dyes from water.![]()
Collapse
Affiliation(s)
- Afsoon Jarrah
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| |
Collapse
|
40
|
Gong W, Liu Y, Li H, Cui Y. Metal-organic frameworks as solid Brønsted acid catalysts for advanced organic transformations. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213400] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Li H, Lian C, Chen L, Zhao J, Yang GY. Two unusual nanosized Nd 3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. NANOSCALE 2020; 12:16091-16101. [PMID: 32724947 DOI: 10.1039/d0nr04051g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two unique nanosized Nd3+-substituted selenotungstates Na9K8{[W3Nd2(H2O)3(NO3)O6](B-α-SeW9O33)2(α-Se2W14O52)}·35H2O (1) and [H2N(CH3)2]7H9Na4{[W2Nd2(H2O)8O6(OH)2(β-Se2W14O52)][W3Nd2(H2O)6O7(B-α-SeW9O33)2]2}·84H2O (2) were prepared by reacting NaSeO3, Na2WO4·2H2O with Nd(NO3)3·6H2O in aqueous solution by controlling different cations and pH values. 1 was synthesized at pH = 4.3 in the presence of KCl, whereas 2 was synthesized at pH = 3.0 in the presence of [H2N(CH3)2]·Cl. The most striking structural feature of 1 and 2 is the coexistence of vacant Keggin and Dawson segments in the polyoxoanion, which is extremely rare in the field of polyoxometalate chemistry. The trimeric polyoxoanion of 1 can be perceived as a fusion of one α-type tetravacant Dawson [α-Se2W14O52]14- unit and two trivacant Keggin [B-α-SeW9O33]8- segments sealing a trigonal bipyramid pentanuclear [W3Nd2(H2O)3(NO3)O6]11+ cluster, while the pentameric polyoxoanion of 2 can be described as one β-type tetravacant Dawson [β-Se2W14O52]14- fragment and four trivacant Keggin [B-α-SeW9O33]8- segments anchoring a saddle-shaped [W8Nd6(H2O)20O20(OH)2]24+ cluster. In addition, the measurements of catalytic oxidation of aromatic thioethers show that 2 as a catalyst possesses extremely outstanding catalytic performance under mild reaction conditions.
Collapse
Affiliation(s)
- Hailou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | | | | | | | | |
Collapse
|
42
|
Piscopo CG, Granadeiro CM, Balula SS, Bošković D. Metal‐Organic Framework‐Based Catalysts for Oxidative Desulfurization. ChemCatChem 2020. [DOI: 10.1002/cctc.202000688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- C. G. Piscopo
- Energetic Materials Department Fraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 D-76327 Pfinztal Germany
| | - C. M. Granadeiro
- LAQV-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências da Universidade do Porto (FCUP) Rua do Campo alegre, s/n 4169-007 Porto Portugal
| | - S. S. Balula
- LAQV-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências da Universidade do Porto (FCUP) Rua do Campo alegre, s/n 4169-007 Porto Portugal
| | - D. Bošković
- Energetic Materials Department Fraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 D-76327 Pfinztal Germany
| |
Collapse
|
43
|
Porous aluminum-based DUT metal-organic frameworks for the transformation of CO2 into cyclic carbonates: A computationally supported study. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Wang P, Jiang L, Zou X, Tan H, Zhang P, Li J, Liu B, Zhu G. Confining Polyoxometalate Clusters into Porous Aromatic Framework Materials for Catalytic Desulfurization of Dibenzothiophene. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25910-25919. [PMID: 32401010 DOI: 10.1021/acsami.0c05392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Removal of notorious sulfur compounds to produce low-sulfur-content (≤10 ppm) diesel is necessary and vital for modern industry and environmental protection. A new type of inorganic-organic hybrid material has been designed and synthesized via confining molybdenum-containing polyoxometalate (POM) clusters within porous aromatic framework-1 (PAF-1) cavities named POM-PAF-1. Deep oxidative desulfurization experiments reveal that POM-PAF-1 possesses excellent reactivity under mild conditions, exemplified by a sulfur removal degree of 98.5% dibenzothiophene within 30 min at 30 °C. The improvement in oxidative desulfurization reactivity from traditional porous POM-based catalysts is owing to uniform POMs and lipophilic and porous PAF-1. The high performance of POM-PAF-1 in terms of excellent reactivity and good stability means it has potential in new heterogeneous catalysis.
Collapse
Affiliation(s)
- Pengyuan Wang
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xiaoqin Zou
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Panpan Zhang
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jialu Li
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Baisong Liu
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
45
|
Li Z, Liu YY, Xu GH, Ma JF. Two polyoxometalate-based inorganic-organic hybrids and one coordination polymer assembled with a functionalized calix[4]arene: Catalytic and electrochemical properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Buru CT, Farha OK. Strategies for Incorporating Catalytically Active Polyoxometalates in Metal-Organic Frameworks for Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5345-5360. [PMID: 31961127 DOI: 10.1021/acsami.9b19785] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyoxometalates (POMs) can benefit from immobilization on solid supports to overcome their difficulty in processability and stability. Among the reported solid supports, metal-organic frameworks (MOFs) offer a crystalline, versatile platform for depositing highly active POMs. The combination of these structures can at times benefit from the combined reactivity of both the POM and MOF, sometimes synergistically, to improve catalysis while balancing desirable properties like porosity, substrate diffusion, or stability. In this Review, we survey the strategies for immobilizing POMs within MOF structures, with an emphasis on how physical and catalytic properties of the parent materials are affected in the composite when employed in organic transformations.
Collapse
Affiliation(s)
- Cassandra T Buru
- International Institute of Nanotechnology and Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- International Institute of Nanotechnology and Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
47
|
Li J, Yang Z, Li S, Jin Q, Zhao J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Lina Z, Yue D, Zhenran G, Lei J, Du X. Promotion of oxidative desulfurization performance of model fuel by 3DOM Ce-doped HPW/TiO2 material. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Wang YY, Zhang HF, Wang DH, Sheng N, Zhang GG, Yin L, Sha JQ. Development of a Uricase-Free Colorimetric Biosensor for Uric Acid Based on PPy-Coated Polyoxometalate-Encapsulated Fourfold Helical Metal–Organic Frameworks. ACS Biomater Sci Eng 2020; 6:1438-1448. [DOI: 10.1021/acsbiomaterials.9b01922] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying-Ying Wang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Hai-Feng Zhang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Dong-Hui Wang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Ning Sheng
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Gong-Guo Zhang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Ling Yin
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Jing-Quan Sha
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| |
Collapse
|
50
|
Yang P, Zhang ZW, Zou GD, Huang Y, Li N, Fan Y. Template Thermolysis to Create a Carbon Dots-Embedded Mesoporous Titanium-Oxo Sulfate Framework for Visible-Light Photocatalytic Applications. Inorg Chem 2020; 59:2062-2069. [DOI: 10.1021/acs.inorgchem.9b03493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pei Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zong-Wen Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yang Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Na Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yang Fan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|