1
|
Madeira F, Veiros LF, Alves LG, Martins AM. Synthesis, Characterization, and Reactivity Studies of New Cyclam-Based Y(III) Complexes. Molecules 2023; 28:7998. [PMID: 38138486 PMCID: PMC10745738 DOI: 10.3390/molecules28247998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
[(Bn2Cyclam)Y(N(SiMe3)2)] was prepared by reaction of H2Bn2Cyclam with Y[N(SiMe3)2]3. The protonation of the macrocycle ligand in [(Bn2Cyclam)Y(N(SiMe3)2)] is observed upon reaction with [HNMe3][BPh4] leading to the formation of [(HBn2Cyclam)Y(N(SiMe3)2)][BPh4]. DFT analysis of [(Bn2Cyclam)Y(N(SiMe3)2)] showed that the HOMO is located on the anionic nitrogen atoms of the cyclam ring indicating that protonation follows orbital control. Addition of H2Bn2Cyclam and H2(3,5-tBu2Bn)2Cyclam to a 1:3 mixture of YCl3 and LiCH2SiMe3 in THF resulted in the formation of [((C6H4CH2)BnCyclam)Y(THF)(µ-Cl)Li(THF)2] and [Y{(η3-3,5-tBu2Bn)2Cyclam}Li(THF)], respectively. The reaction of H23,5-tBu2Bn2Cyclam with Y(CH2SiMe3)3(THF)2 was studied and monitored by a temperature variation NMR experiment revealing the formation of [(3,5-tBu2Bn2Cyclam)Y(CH2SiMe3)]. Preliminary catalytic assays have shown that [Y{(η3-3,5-tBu2Bn)2Cyclam}Li(THF)] is a very efficient catalyst for the intramolecular hydroamination of 2,2-diphenyl-pent-4-enylamine.
Collapse
Affiliation(s)
- Filipe Madeira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Luis G. Alves
- Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Av. António José de Almeida nº 12, 1000-043 Lisbon, Portugal
| | - Ana M. Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives. REACTIONS 2021. [DOI: 10.3390/reactions2030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, new mono- and di-alkoxido zirconium(IV) complexes supported by tetradentate dianionic cyclam ligands were synthesized and characterized. These compounds were obtained by reaction of the parent Zr(IV) dichlorido species with one or two equivalents of the corresponding lithium alkoxido, whereas (3,5-Me2Bn2Cyclam)Zr(OPh)2 was prepared by protonolysis of the orthometallated species (3,5-Me-C6H4CH2)2Cyclam)Zr with phenol. The solid-state molecular structures of (Bn2Cyclam)ZrCl(OtBu) and (4-tBuBn2Cyclam)Zr(OiPr)2 show a trigonal prismatic geometry around the metal centers. (Bn2Cyclam)Zr(SPh)(OtBu) and (Bn2Cyclam)ZrMe(OiPr) were prepared by reaction of (Bn2Cyclam)ZrCl(OR) (R = iPr, tBu) with one equivalent of LiSPh or MeMgCl, respectively. The reactions of (Bn2Cyclam)Zr(OiPr)2 and (4-tBuBn2Cyclam)Zr(OiPr)2 with carbon dioxide suggested the formation of species that correspond to the addition of four CO2 molecules.
Collapse
|
3
|
Higgins TF, Lee S, Winkler JD. Synthesis of and Metal Complexation with a Chiral Cyclam. J Org Chem 2021; 86:5417-5422. [PMID: 33720726 DOI: 10.1021/acs.joc.1c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetraazamacrocycles, like cyclam 1, are well-studied polyamine ligands for metal ions that were first developed to model biological processes. Despite being studied for nearly 60 years, the development of chiral variants of 1 has been limited. We report the synthesis of a chiral variant of 1, the tetraazamacrocycle 2. Outlined herein are the synthesis of 2, a preliminary study of its complexation with metal ions, and the properties of the resulting metal complexes.
Collapse
Affiliation(s)
- Tyler F Higgins
- Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seokwoo Lee
- Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey D Winkler
- Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Synthesis and structural analysis of two cyclam derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Bordes A, Poveda A, Troadec T, Franconetti A, Ardá A, Perrin F, Ménand M, Sollogoub M, Guillard J, Désiré J, Tripier R, Jiménez-Barbero J, Blériot Y. Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Org Lett 2020; 22:2344-2349. [PMID: 32153195 PMCID: PMC7114874 DOI: 10.1021/acs.orglett.0c00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A new family of chiral C2 symmetric
tetraazamacrocycles, coined ISAC for IminoSugar Aza-Crown, incorporating
two iminosugars adopting a 4C1 conformation
is disclosed. Multinuclear NMR experiments on the corresponding Cd2+ complex show that the ISAC is a strong chelator in water
and its tetramine cavity adopts a conformation similar to that of
the parent Cd–cyclam complex. Similar behavior is observed
with Cu2+ in solution, with enhanced stability compared
to the Cu–cyclam complex.
Collapse
Affiliation(s)
- Alexandra Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Ana Poveda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Thibault Troadec
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Antonio Franconetti
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Ana Ardá
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain
| | - Flavie Perrin
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jerôme Guillard
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Raphaël Tripier
- Universite de Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.,Dept. Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
6
|
Ohta S, Takahashi S, Takenaka A, Akazawa Y, Miyamoto R, Okazaki M. Synthesis, Structures, and Solution Dynamics of Titanium and Zirconium Complexes Carrying a Bis(indolyl) and Two Diethylamido Ligands. Inorg Chem 2019; 58:15520-15528. [PMID: 31664824 DOI: 10.1021/acs.inorgchem.9b02566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indolyl is the anionic species obtained from the deprotonation of the N-H group of indole. Group 4 transition-metal complexes that carry indolyl-based polydentate ligands represent promising homogeneous catalysts for, e.g., olefin polymerization, hydroamination, and nitrogen-fixation reactions due to the weak π-donation and electron-withdrawing properties, as well as the low basicity of indolyl. In this study, we systematically investigated the synthesis and structures of titanium and zirconium complexes that carry deprotonated 2,2'-bis(indolyl)methane ligands (henceforth: bis(indolyl) ligands) and two diethylamido ligands. We found that the coordination geometry of the indolyl nitrogen atom in such bis(indolyl) ligands is affected by the steric impact of the substituents attached to the central aromatic ring. Moreover, we examined the dynamics of such bis(indolyl) ligands in solution for the corresponding zirconium complexes, and the mechanism was discussed in conjunction with DFT calculations. The results of this study suggest that bis(indolyl) ligands may also serve as coordinatively flexible ancillary ligands, and indicate the feasibility of an expansion from bis(indolyl) to bis(indolyl)-donor ligands.
Collapse
Affiliation(s)
- Shun Ohta
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Shiona Takahashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Amon Takenaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Yuta Akazawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Ryo Miyamoto
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Masaaki Okazaki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| |
Collapse
|
7
|
Mujahed S, Valentini F, Cohen S, Vaccaro L, Gelman D. Polymer-Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions. CHEMSUSCHEM 2019; 12:4693-4699. [PMID: 31368199 DOI: 10.1002/cssc.201901728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Indexed: 06/10/2023]
Abstract
A series of polymer-supported cooperative PC(sp3 )P pincer catalysts was synthesized and characterized. Their catalytic activity in the acceptorless dehydrogenative coupling of alcohols and the transfer hydrogenation of aldehydes with formic acid as a hydrogen source was investigated. This comparative study, examining homogeneous and polymer-tethered species, proved that carefully designing a link between the support and the catalytic moiety, which takes into consideration the mechanism underlying the target transformation, might lead to superior heterogeneous catalysis.
Collapse
Affiliation(s)
- Shrouq Mujahed
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Federica Valentini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Shirel Cohen
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Luigi Vaccaro
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, 117198, Moscow, Russia
| |
Collapse
|
8
|
Alves LG, Munhá RF, Martins AM. Synthesis and reactivity of cyclam-based Zr(IV) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Banziger SD, Ren T. Syntheses, structures and bonding of 3d metal alkynyl complexes of cyclam and its derivatives. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|