1
|
Awada A, Lanoë PH, Philouze C, Loiseau F, Jouvenot D. Tuning the Coordination Environment of Ru(II) Complexes with a Tailored Acridine Ligand. Molecules 2024; 29:3468. [PMID: 39124873 PMCID: PMC11313782 DOI: 10.3390/molecules29153468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A novel tridentate ligand featuring an acridine core and pyrazole rings, namely 2,7- di-tert-butyl-4,5-di(pyrazol-1-yl)acridine, L, was designed and used to create two ruthenium(II) complexes: [RuL2](PF6)2 and [Ru(tpy)L](PF6)2. Surprisingly, the ligand adopted different coordination modes in the complexes: facial coordination for the homoleptic complex and meridional coordination for the heteroleptic complex. The electronic absorption and electrochemical properties were evaluated. Although both complexes exhibited favorable electronic properties for luminescence, neither emitted light at room temperature nor at 77 K. This study highlights the complex interplay between ligand design, coordination mode, and luminescence in ruthenium(II) complexes.
Collapse
Affiliation(s)
| | | | | | - Frédérique Loiseau
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France; (A.A.); (P.-H.L.); (C.P.)
| | - Damien Jouvenot
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France; (A.A.); (P.-H.L.); (C.P.)
| |
Collapse
|
2
|
A DFT, TDDFT and QTAIM study of the acridine pincer ligand-based Ru(II) and Rh(III) complexes: detailed analysis of the metal-F bonding. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Kar S, Milstein D. Sustainable catalysis with fluxional acridine-based PNP pincer complexes. Chem Commun (Camb) 2022; 58:3731-3746. [PMID: 35234797 PMCID: PMC8932388 DOI: 10.1039/d2cc00247g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Because of the widespread use of fossil fuels and the resulting global warming, development of sustainable catalytic transformations is now more important than ever to obtain our desired fuels and building materials with the least carbon footprint and waste production. Many sustainable (de)hydrogenation reactions, including CO2 reduction, H2 carrier systems, and others, have been reported using molecular pincer complexes. A specific subset of pincer complexes containing a central acridine donor with flanking CH2PR2 ligands, known as acridine-based PNP pincer complexes, exhibit special reactivities that are not imitable by other PNP pincer complexes such as pyridine-based or (R2PCH2CH2)2NH type ligands. The goal of this article is to highlight the unique reactivities of acridine-based complexes and then investigate how these reactivities allow these complexes to catalyse many sustainable reactions that traditional pincer complexes cannot catalyse. To that end, we will initially go over the synthesis and structural features of acridine complexes, such as the labile coordination of the central N donor and the observed fac-mer fluxionality. Following that, distinct reactivity patterns of acridine-based complexes including their reactivity with acids and water will be discussed. Finally, we will discuss the reaction systems that have been developed with acridine complexes thus far, including the notable selective transformations of primary alcohols to primary amines using ammonia, N-heteroaromatic synthesis from alcohols and ammonia, oxidation reactions with water with H2 liberation, development of H2 carrier systems, and others, and conclude the article with future possible directions. We hope that the systemic study presented here will aid researchers in developing further sustainable reactions based on the unique acridine-based pincer complexes.
Collapse
Affiliation(s)
- Sayan Kar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Andris E, Segers K, Mehara J, Rulíšek L, Roithová J. Closed Shell Iron(IV) Oxo Complex with an Fe–O Triple Bond: Computational Design, Synthesis, and Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erik Andris
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Koen Segers
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jaya Mehara
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Jana Roithová
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
6
|
Andris E, Segers K, Mehara J, Rulíšek L, Roithová J. Closed Shell Iron(IV) Oxo Complex with an Fe-O Triple Bond: Computational Design, Synthesis, and Reactivity. Angew Chem Int Ed Engl 2020; 59:23137-23144. [PMID: 32926539 PMCID: PMC7756500 DOI: 10.1002/anie.202009347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Iron(IV)-oxo intermediates in nature contain two unpaired electrons in the Fe-O antibonding orbitals, which are thought to contribute to their high reactivity. To challenge this hypothesis, we designed and synthesized closed-shell singlet iron(IV) oxo complex [(quinisox)Fe(O)]+ (1+ ; quinisox-H=(N-(2-(2-isoxazoline-3-yl)phenyl)quinoline-8-carboxamide). We identified the quinisox ligand by DFT computational screening out of over 450 candidates. After the ligand synthesis, we detected 1+ in the gas phase and confirmed its spin state by visible and infrared photodissociation spectroscopy (IRPD). The Fe-O stretching frequency in 1+ is 960.5 cm-1 , consistent with an Fe-O triple bond, which was also confirmed by multireference calculations. The unprecedented bond strength is accompanied by high gas-phase reactivity of 1+ in oxygen atom transfer (OAT) and in proton-coupled electron transfer reactions. This challenges the current view of the spin-state driven reactivity of the Fe-O complexes.
Collapse
Affiliation(s)
- Erik Andris
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610Praha 6Czech Republic
| | - Koen Segers
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Jaya Mehara
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610Praha 6Czech Republic
| | - Jana Roithová
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
7
|
Ishikawa S, Shimasaki F, Maeda H, Segi M, Furuyama T. Synthesis of Low-symmetry Ball-shaped Ruthenium Complexes and Fine-tuning of Their Optical Properties in the Visible and NIR Region. CHEM LETT 2020. [DOI: 10.1246/cl.200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sari Ishikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Fumika Shimasaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Omolo KO, Bacsa J, Sadighi JP. Acridine Variations for Coordination Chemistry. Isr J Chem 2020. [DOI: 10.1002/ijch.202000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevin O. Omolo
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
- present address: Intel Corporation, Chandler, AZ U.S.A
| | - John Bacsa
- X-Ray Crystallography CenterDepartment of Chemistry, Emory University Atlanta, Georgia U.S.A
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
| | - Joseph P. Sadighi
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia, U.S.A
| |
Collapse
|
9
|
Furuyama T, Shimasaki F, Saikawa N, Maeda H, Segi M. One-step synthesis of ball-shaped metal complexes with a main absorption band in the near-IR region. Sci Rep 2019; 9:16528. [PMID: 31712715 PMCID: PMC6848132 DOI: 10.1038/s41598-019-53014-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
The design of near-IR materials is highly relevant to energy and pharmaceutical sciences due to the high proportion of near-IR irradiation in the solar spectrum and the high penetration of near-IR light in biological samples. Here, we show the one-step synthesis of hexacoordinated ruthenium and iron complexes that exhibit a main absorption band in the near-IR region. For that purpose, novel tridentate ligands were prepared by condensation of two diimines and four cyanoaryl derivatives in the presence of ruthenium and iron template ions. This method was applied to a wide variety of cyanoaryl, diimine, and metal ion combinations. The relationship between the structure and the optical and electrochemical properties in the resulting complexes was examined, and the results demonstrated that these compounds represent novel near-IR materials whose physical properties can be controlled based on rational design guidelines. The intense absorption bands in the 700–900 nm region were assigned to metal-to-ligand charge transfer (MLCT) transitions, which should allow applications in materials with triplet excited states under irradiation with near-IR light.
Collapse
Affiliation(s)
- Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Fumika Shimasaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Natsumi Saikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|