1
|
Wang Y, Li S, Dou Y, Li H, Lu H. KMB 4O 6F 3 (M = Co, Fe): two-dimensional magnetic fluorooxoborates with triangular lattices directed by triangular BO 3 units. Dalton Trans 2023; 52:13555-13564. [PMID: 37721503 DOI: 10.1039/d3dt02394j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Frustrated magnetic systems are of great interest owing to their spin liquid state for application in quantum computing. However, experimentally, spin liquid has not been realized. Thus, experimental explorations of frustrated magnetic systems including triangular lattices are still urgent, particularly for directed synthesis compared to random exploration. Herein, for the first time, directed by the use of a triangular unit of the BO3 anion group, two novel layered magnetic fluorooxoborates KMB4O6F3 (M = Co 1, Fe 2) with triangular lattices have been hydrothermally synthesized and characterized. Compounds 1 and 2 are isostructural and crystallize in the P21/c space group with layered magnetic triangular lattices, which are further separated by K+ ions. Magnetic susceptibility curves of both 1 and 2 show no λ-anomaly peak down to a low temperature of 2 K in the absence of a magnetic long-range ordering transition, which are further confirmed by the heat capacity results. The magnetic-field dependence of magnetization at 2 K shows saturation of 2.20μB for 1 and 4.24μB for 2, respectively, at 7 T, after roughly subtracting the Van Vleck paramagnetic contribution. Further in-depth investigation of the underlying physics at a lower temperature below 2 K would be subsequently performed. Moreover, thermal stability and FT-IR and UV-vis-NIR spectroscopy with optical bandgap properties are also reported. Most importantly, our work provides a promising method to experimentally realize specific magnetic lattices (e.g. triangular lattices) directed by the use of triangular groups (e.g. BO3) as the functional unit.
Collapse
Affiliation(s)
- Yanhong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yaling Dou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hui Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Liu H, Wang Y, Zhou Y, Li S, Dou Y, Wang T, Lu H. MIO 3F (M = Co and Ni): Magnetic Iodate Fluorides with Zigzag Chains. Inorg Chem 2022; 61:17838-17847. [DOI: 10.1021/acs.inorgchem.2c03167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanhong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yadong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaling Dou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Zhou Y, Wang Y, Cao J, Zeng Z, Zhou T, Liao R, Wang T, Wang Z, Xia Z, Ouyang Z, Lu H. CoMOF 5(pyrazine)(H 2O) 2 (M = Nb, Ta): Two-Layered Cobalt Oxyfluoride Antiferromagnets with Spin Flop Transitions. Inorg Chem 2021; 60:13309-13319. [PMID: 34374524 DOI: 10.1021/acs.inorgchem.1c01654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two cobalt oxyfluoride antiferromagnets CoMOF5(pyz)(H2O)2 (M = Nb 1, Ta 2; pyz = pyrazine) have been synthesized via conventional hydrothermal methods and characterized by thermogravimetric (TGA) analysis, FTIR spectroscopy, electron spin resonance (ESR), magnetic susceptibility, and magnetization measurements at both static low field and pulsed high field. The single-crystal X-ray diffraction indicates both compounds 1 and 2 are isostructural and crystallize in the monoclinic space group C2/m with a two-dimensional Co2+ triangular lattice in the ab plane, separated by the nonmagnetic MOF5 (M = Nb 1, Ta 2) octahedra along the c-axis with large intertriangular-lattice Co···Co distance. Because of low dimensionality together with frustrated triangular lattice, compounds 1 and 2 exhibit no long-range antiferromagnetic order until ∼3.7 K. Moreover, a spin flop transition is observed in the magnetization curves at 2 K for both compounds, which is further confirmed by ESR spectra. In addition, the ESR spectra suggest the presence of a zero-field spin gap in both compounds. The high field magnetization measured at 2 K saturates at ∼7 T with Ms = 1.55 μB for 1 and 1.71 μB for 2, respectively, after subtracting the Van Vleck paramagnetic contribution, which is usually observed for Co2+ ions with pseudospin spin of 1/2 at low temperature. Powder-averaged magnetic anisotropy of g = 3.10 for 1 (3.42 for 2) and magnetic superexchange interaction J/kB = -3.2 K for 1 (-3.6 K for 2) are obtained.
Collapse
Affiliation(s)
- Yadong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanhong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaojiao Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo Zeng
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Taiping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rongzhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengcai Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|