1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Hammouda MM, Elattar KM, Rashed MM, Osman AMA. Synthesis, biological activities, and future perspectives of steroidal monocyclic pyridines. RSC Med Chem 2023; 14:1934-1972. [PMID: 37859725 PMCID: PMC10583814 DOI: 10.1039/d3md00411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Steroidal pyridines are a class of compounds that have been the subject of extensive research in recent years due to their potential biological activities. The introduction of a pyridine ring into the steroid skeleton can significantly alter the chemical and biological properties of the compound, making it more potent and/or selective for a particular target. Different synthetic methods have been developed for the preparation of steroidal pyridines. This review provides an overview of the synthesis, biological activities, and future perspectives of steroidal monocyclic dihydropyridines, tetrahydropyridines, and pyridines from 2005 to the present. The different synthetic methods that have been developed for the preparation of these steroids are discussed, as well as the proposed mechanisms and the biological activities that have been reported. Finally, the potential of steroidal monocyclic pyridines for the development of new drugs is discussed. This review is intended to provide a comprehensive overview of the field of steroidal monocyclic pyridines for researchers and scientists who are interested in this area of research. It is also hoped that this review will stimulate further research into the synthesis and biological activities of steroidal pyridines to develop new and improved drugs for the treatment of diseases.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt +201010655354
| | - Marwa M Rashed
- Toxicology Department, Mansoura Hospital, Faculty of Medicine, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Amany M A Osman
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Menoufia University Shebin El-Koam Egypt
| |
Collapse
|
3
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Farwa U, Singh N, Lee J. Self-assembly of supramolecules containing half-sandwich iridium units. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
8
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
9
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|