1
|
Kozyreva AI, Yudin VN, Gaifulin YM, Ivanov AA, Yanshole VV, Shestopalov MA, Asanov IP, Evtushok VY, Evtushok DV. Exploring the Frontiers of Heterometallic Systems: the {FeW 5} Octahedral Cluster Complex. Inorg Chem 2024; 63:16128-16133. [PMID: 39171697 DOI: 10.1021/acs.inorgchem.4c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This research presents the first examples of heterometallic octahedral cluster complexes incorporating both 5d and 3d metals, specifically, tungsten and iron. The key compound, (TBA)2[FeW5Br14] (TBA = tetrabutylammonium), exhibits selective ligand substitution reactions at the iron site when exposed to various solvents. Several {FeW5}-type anions, namely, [FeW5Br14]2-, [FeW5Br13(L)]- (L = H2O, DMSO, CH3CN), and [(FeW5Br13)2O]4-, were revealed and characterized by single-crystal X-ray diffraction analysis. The redox properties of [FeW5Br14]2- were studied and compared with those of [W6Br14]2-. Density functional theory calculations demonstrated that the bonding between Fe and W atoms is fundamentally different from the bonding between 4d (Mo-Mo) or 5d (W-W) metals in isotypic {M6} clusters.
Collapse
Affiliation(s)
- Anastasia I Kozyreva
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Strasse, Novosibirsk 630090, Russia
| | - Vasiliy N Yudin
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Yakov M Gaifulin
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- Novosibirsk State University, 2 Pirogova Strasse, Novosibirsk 630090, Russia
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3a Institutskaya Strasse, Novosibirsk 630090, Russia
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Igor P Asanov
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (SB RAS), 5 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Darya V Evtushok
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Uemura K, Adachi T, Takamori A, Yoshida M. Antiferromagnetic Interactions through the Thirteen Å Metal-Metal Distances in Heterometallic One-Dimensional Chains. Angew Chem Int Ed Engl 2024; 63:e202408415. [PMID: 38844418 DOI: 10.1002/anie.202408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 07/17/2024]
Abstract
A heterometallic and paramagnetic one-dimensional aligned chain in -Rh(+2)-Rh(+2)- Pt(+2)-Ni(+2)-Pt(+2)- with direct metal-metal bonds was obtained via HOMO-LUMO interactions at the σ* (dz2) orbital between [Rh2(O2CCH3)4] and [Pt2Ni(piam)4(NH3)4] (piam=pivalamidate). The one-dimensional chains had straight backbones attributed to face-to-face stacking of each complex, and the Ni atoms were separated by approximately 13 Å from four different metals. Each Ni atom had two unpaired electrons in the d-orbitals, which strongly exchanged with J=-37.9 cm-1 through the diamagnetic -Pt-Rh-Rh-Pt- bonds.
Collapse
Affiliation(s)
- Kazuhiro Uemura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Tomonori Adachi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Atsushi Takamori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Michiyuki Yoshida
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| |
Collapse
|
3
|
Pilar Del Río M, Villarroya BE, López JA, Geer AM, Lahoz FJ, Ciriano MA, Tejel C. Mixed-Valence Tetrametallic Iridium Chains. Chemistry 2023; 29:e202301438. [PMID: 37402228 DOI: 10.1002/chem.202301438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Neutral [X-{Ir2 }-{Ir2 }-X] (X=Cl, Br, SCN, I) and dicationic [L-{Ir2 }-{Ir2 }-L]2+ (L=MeCN, Me2 CO) tetrametallic iridium chains made by connecting two dinuclear {Ir2 } units ({Ir2 }=[Ir2 (μ-OPy)2 (CO)4 ], OPy=2-pyridonate) by an iridium-iridium bond are described. The complexes exhibit fractional averaged oxidation states of +1.5 and electronic delocalization along the metallic chain. While the axial ligands do not significantly affect the metal-metal bond lengths, the metallic chain has a significant impact on the iridium-L/X bond distances. The complexes show free rotation around the unsupported iridium-iridium bond in solution, with a low-energy transition state for the chloride chain. The absorption spectra of these complexes show characteristic bands at 438-504 nm, which can be fine-tuned by varying the terminal capping ligands.
Collapse
Affiliation(s)
- M Pilar Del Río
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - B Eva Villarroya
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Fernando J Lahoz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| |
Collapse
|
4
|
Govindarajan R, Deolka S, Khusnutdinova JR. Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: bridging the opposites. Chem Sci 2022; 13:14008-14031. [PMID: 36540828 PMCID: PMC9728565 DOI: 10.1039/d2sc04263k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Heterobi- and multimetallic complexes providing close proximity between several metal centers serve as active species in artificial and enzymatic catalysis, and in model systems, showing unique modes of metal-metal cooperative bond activation. Through the rational design of well-defined, unsymmetrical ligand scaffolds, we create a convenient approach to support the assembly of heterometallic species in a well-defined and site-specific manner, preventing them from scrambling and dissociation. In this perspective, we will outline general strategies for the design of unsymmetrical ligands to support heterobi- and multimetallic complexes that show reactivity in various types of heterometallic cooperative bond activation.
Collapse
Affiliation(s)
- R Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
5
|
Uemura K, Takamori A. Recent studies on the magnetic properties of paramagnetic metals linked by diamagnetic second metals. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Takamori A, Uemura K. Structure and magnetic behavior of a two-dimensional honeycomb sheet containing trans-bridged platinum and iron trinuclear complex linked using rhodium acetate with chloride coordination. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Takamori A, Uemura K. Dimerization of Paramagnetic Trinuclear Complexes by Coordination Geometry Changes Showing Mixed Valency and Significant Antiferromagnetic Coupling through -Pt···Pt- Bonds. Inorg Chem 2022; 61:5762-5778. [PMID: 35380821 DOI: 10.1021/acs.inorgchem.1c03848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paramagnetic trinuclear complexes, trans-[Pt2M(piam)4(NH3)4](ClO4)x (t-M; piam = pivalamidate, M = Mn, Fe, Co, Ni, and Cu, x = 2 or 3), aligned as Pt-M-Pt were successfully synthesized and characterized. The dihedral angles between the Pt and M coordination planes in t-M are approximately parallel, showing straight metal-metal bonds with distances of approximately 2.6 Å. Except for t-Fe, the trinuclear complexes are dimerized with close contact (approximately 3.9 Å) between the end Pt atoms to form Pt-M-Pt···Pt-M-Pt alignments with high-spin M(+2) containing five (t-Mn), three (t-Co), two (t-Ni), and one (t-Cu) unpaired electrons localized on M atoms. Several physical measurements and calculations revealed that the dimerized structures were maintained in MeCN, where cyclic voltammograms for t-M exhibited two-step oxidation and reduction attributed to Pt-M(+2)-Pt···Pt-M(+2)-Pt ↔ Pt-M(+3)-Pt···Pt-M(+2)-Pt ↔ Pt-M(+3)-Pt···Pt-M(+3)-Pt via mixed-valent states. Magnetic susceptibility measurements for t-M showed antiferromagnetic interaction, t-Mn: J = -0.9 cm-1, t-Co: J = -3.5 cm-1, t-Ni: J = -7.3 cm-1, and t-Cu: J = 0.0 cm-1, between the two M centers with distances of 9.0 Å through Pt···Pt bonds.
Collapse
Affiliation(s)
- Atsushi Takamori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Kazuhiro Uemura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Schmorl S, Börner M, Kersting B. Stable thiolate adducts of Rh 2(OAc) 4 - assembly of hexametallic Ni 4Rh 2 complexes. Dalton Trans 2021; 51:59-62. [PMID: 34889331 DOI: 10.1039/d1dt03509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiolate adducts of dirhodium(II) tetraacetate have proven difficult to prepare. We isolated a stable, paramagnetic Ni4Rh2 adduct containing Ni-based metallothiolates bound in axial positions of the Rh24+ core. The adduct formation is accompanied by a change of the magnetic exchange interaction in the dinuclear Ni2 subunits.
Collapse
Affiliation(s)
- Sara Schmorl
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Martin Börner
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
9
|
Uemura K, Aoki Y, Takamori A. Paramagnetic one-dimensional chains containing high-spin manganese atoms showing antiferromagnetic interaction through -Pt-Rh-Rh-Pt- bonds. Dalton Trans 2021; 51:946-957. [PMID: 34928286 DOI: 10.1039/d1dt03537a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To exploit the magnetic interactions of multiple metals, a heterometallic one-dimensional (1D) chain containing three kinds of metals, Rh, Pt, and Mn, where [Rh2(O2CCH3)4] and [Pt2Mn(piam)4(NH3)4]2+ (piam = pivalamidate) are connected through unbridged Rh-Pt bonds to form -Rh-Rh-Pt-Mn-Pt- alignments was successfully synthesized. The Mn atoms are tetrahedrally coordinated by four oxygen atoms of the piam ligands, where the coordination geometries form a zigzag 1D chain. Each Mn atom is linked by -Pt-Rh-Rh-Pt-, with a Mn-Mn separation of 13.9 Å. In parent [Pt2Mn(piam)4(NH3)4](PF6)2, Mn adopts two coordination environments, octahedral and tetrahedral, both of which are Mn(+2) high-spin states. In EtOH, [Rh2(O2CCH3)4] selectively binds tetrahedral Mn to afford a 1D chain. Physical analysis of the 1D chain using electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) revealed that all metals are divalent, indicating five unpaired spin-localized electrons on the Mn atoms. Magnetic susceptibility measurements indicated antiferromagnetic intra-chain interactions between the Mn atoms in the 1D chain, where χT at 300 K was 5.33 cm3 K mol-1 and gradually decreased to 1.65 cm3 K mol-1 at 2 K. Theoretical fitting of the magnetic behavior showed weak exchange coupling (zJ = -0.43 cm-1) between two high-spin Mn(+2) ions through diamagnetic Pt-Rh-Rh-Pt.
Collapse
Affiliation(s)
- Kazuhiro Uemura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| | - Yusuke Aoki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| | - Atsushi Takamori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| |
Collapse
|
10
|
Pantalon Juraj N, Kirin SI. Inorganic stereochemistry: Geometric isomerism in bis-tridentate ligand complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Uemura K, Yasuda E, Sugiyama Y. Improving the Solubility of Hexanuclear Heterometallic Extended Metal Atom Chain Compounds in Nonpolar Solvents by Introducing Alkyl Amine Moieties. ACS OMEGA 2021; 6:18487-18503. [PMID: 34308079 PMCID: PMC8296546 DOI: 10.1021/acsomega.1c02634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) interaction at the d z 2 orbital between two kinds of metal complex is useful for obtaining heterometallic one-dimensional (1D) chains as well as heterometallic metal string compounds (HMSCs). Platinum dinuclear complexes, [Pt2(piam)2(NH2R)4]X2 (piam = pivalamidate, R = CH3, C2H5, C3H7, or C4H9, X = anion), comprising σ* as HOMO were mixed with [Rh2(O2CCH3)4] comprising σ* as LUMO in solvents to afford single crystals of [{Rh2(O2CCH3)4}{Pt2(piam)2(NH2R)4}2]X4 (2-5). Single-crystal X-ray analyses revealed that 2-5 are hexanuclear complexes that are one-dimensionally aligned as Pt-Pt-Rh-Rh-Pt-Pt with metal-metal bonds, where the alkyl moieties at end Pt atoms obstruct further 1D extension. Complexes 2-5 appear as if they are cut off from an infinite chain [{Rh2(O2CCH3)4}{Pt2(piam)2(NH3)4}2] n (PF6)4n ·6nH2O (1) aligned as -{Pt-Pt-Rh-Rh-Pt-Pt} n -. The diffuse reflectance spectrum of 1 depicts broad shoulder bands, which are not present in the spectra of 2-5, proving that the infinite chain 1 forms a band structure. Compounds 4 and 5 with propyl or butyl moieties at amine ligands, respectively, are soluble in nonpolar solvents, such as CH2Cl2, without the dissociation of their hexanuclear structures. Taking advantage of their solubility, measurement of cyclic voltammetry in CH2Cl2 become possible, which shows the quasi-reversible oxidation and reduction waves at 4: E ox = 0.86 V and E red = 0.69 V and 5: E ox = 0.87 V and E red = 0.53 V.
Collapse
|
12
|
Braunstein P, Danopoulos AA. Transition Metal Chain Complexes Supported by Soft Donor Assembling Ligands. Chem Rev 2021; 121:7346-7397. [PMID: 34080835 DOI: 10.1021/acs.chemrev.0c01197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemistry of discrete molecular chains constituted by metals in low oxidation states, displaying metal-metal proximity and stabilized by suitable metal-bridging, assembling ligands comprising at least one soft donor atom is comprehensively reviewed; complexes with a single (hard or soft) bridging atom (e.g., μ-halide, μ-sulfide, or μ-PR2 etc.) as well as "closed" metal arrays (that fall in the realm of cluster chemistry) are excluded. The focus is on transition metal-based systems, with few excursions to cases combining transition and post-transition elements. Most relevant supporting ligands have neutral C, P, O, or S donor (mainly, N-heterocyclic carbene, phosphine, ether, thioether) or anionic donor (mainly phenyl, ylide, silyl, phosphide, thiolate) groups. A supporting-ligand-based classification of the metal chains is introduced, using as the classifying parameter the number of "bites" (i.e., ligand bridges) subtending each intermetallic separation. The ligands are further grouped according to the number of donor atoms interacting with the metal chain (called denticity in the following) and the column of the Periodic Table to which the set of donor atoms belongs (in ascending order). A complementary metal-based compilation of the complexes discussed is also provided in a concise tabular form.
Collapse
Affiliation(s)
- Pierre Braunstein
- CNRS, Chimie UMR 7177, Laboratoire de Chimie de Coordination, Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France
| | - Andreas A Danopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
13
|
Ohmagari H, Nakaya M, Tanaka K, Zenno H, Akiyoshi R, Sekine Y, Zhang Y, Min KS, Hasegawa M, Lindoy LF, Hayami S. Magnetism in a helicate complexes arising with the tetradentate ligand. Dalton Trans 2021; 50:494-498. [PMID: 33367344 DOI: 10.1039/d0dt03990j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of [M(dimphen)(NCS)2] (1; M = FeII), (2; M = CoII), (3; M = MnII) and [Fe(dimphen)(NCSe)2] (4), where dimphen = [1,2-bis(9-methyl-1,10-phenanthrolin-2-yl)ethane], are reported. The crystal packing structures of 1-3, show intermolecular π-π stacking and NCSSCN interactions. The complex 1 shows ferromagnetic interaction, and the complex 2 displays single-molecular magnet behaviour.
Collapse
Affiliation(s)
- Hitomi Ohmagari
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Manabu Nakaya
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Kaisei Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Miki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
14
|
Cheng MC, Lee GH, Lin TS, Liu YC, Chiang MH, Peng SM. A new series of heteronuclear metal strings, MRhRh(dpa)4Cl2 and MRhRhM(dpa)4X2, from the reactions of Rh2(dpa)4 with metal ions of group 7 to group 12. Dalton Trans 2021; 50:520-534. [DOI: 10.1039/d0dt03311a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new series of trinuclear and tetranuclear HMSCs, MRhRh(dpa)4Cl2 and MRhRhM(dpa)4X2, from the reactions of Rh2(dpa)4 and metal ions were synthesized.
Collapse
Affiliation(s)
- Ming-Chuan Cheng
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
- Institute of Chemistry
| | - Gene-Hsiang Lee
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Tien-Sung Lin
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Yu-Chiao Liu
- Institute of Chemistry
- Academia Sinica
- Taipei
- Republic of China
| | - Ming-Hsi Chiang
- Institute of Chemistry
- Academia Sinica
- Taipei
- Republic of China
| | - Shie-Ming Peng
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
- Institute of Chemistry
| |
Collapse
|
15
|
Uemura K, Ito D, Pirillo J, Hijikata Y, Saeki A. Modulation of Band Gaps toward Varying Conductivities in Heterometallic One-Dimensional Chains by Ligand Alteration and Third Metal Insertion. ACS OMEGA 2020; 5:30502-30518. [PMID: 33283099 PMCID: PMC7711699 DOI: 10.1021/acsomega.0c04317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
A heterometallic one-dimensional (1-D) chain consisting of multiple kinds of metals, Rh, Pt, and Pd, with direct metal-metal bonds was successfully obtained by mixing a Rh dinuclear complex and Pt-Pd-Pt trinuclear complex. The Pt-Pd-Pt trinuclear complex can be reversibly one-electron-oxidized or -reduced, where the electron paramagnetic resonance spectrum of the one-electron-oxidized one shows an axially symmetric signal with hyperfine splitting by two Pt and Pd, indicating that an unpaired electron is delocalized to the d z 2 orbital of Pt-Pd-Pt. Utilized with the highest occupied molecular orbital and lowest unoccupied molecular orbital interaction at the d z 2 orbital, simple mixing of the Pt-Pd-Pt trinuclear complex and Rh dinuclear complex in adequate solvents afforded heterometallic 1-D chains, which are aligned as -Rh-Rh-Pt-Pd-Pt-. Several physical measurements revealed that the metal oxidation state is +2. Diffuse reflectance spectra and theoretical calculations show that heterometallic 1-D chains have σ-type conduction and valence bands where π*(Rh2) are lying between them, whose gaps become narrower than the prototype chains aligned as -Rh-Rh-Pt-Pt-Pt-Pt-. The narrower band gaps are induced by destabilization of the σ-type valence bands and accompanied by insertion of Pd ions because the d-orbital energy level of Pd is closer in value to Rh compared with Pt. Flash-photolysis time-resolved microwave conductivity measurements exhibited an increase in the product of charge carrier mobility and its generation efficiency (8.1 × 10-5 to 4.6 × 10-4 cm2 V-1 s-1) with narrowing the band gaps, suggesting that the better conductivity is attributed to shorter metal-metal distances in 1-D chains. These results imply the possibilities of controlling band gap with ligand modification and third metal insertion in heterometallic 1-D chains to show various conductivities.
Collapse
Affiliation(s)
- Kazuhiro Uemura
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Daiki Ito
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Jenny Pirillo
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yuh Hijikata
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Akinori Saeki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Ponduru TT, Wang G, Manoj S, Pan S, Zhao L, Frenking G, Dias HVR. Synthesis and characterization of heterometallic complexes involving coinage metals and isoelectronic Fe(CO) 5, [Mn(CO) 5] - and [Fe(CO) 4CN] - ligands. Dalton Trans 2020; 49:8566-8581. [PMID: 32542268 DOI: 10.1039/d0dt01590c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of coinage metal ions with Fe(CO)5, [Mn(CO)5]- and [Fe(CO)4CN]- has been explored using Mes3P and N-heterocyclic carbene supporting ligands. A comparison of [(SIPr)Au-Fe(CO)5][SbF6], [(Et2CAAC)Au-Fe(CO)5][SbF6] and [(Mes3P)Au-Fe(CO)5][SbF6] shows that the ligand donor strength towards Au(i) follows the order Mes3P > Et2CAAC > SIPr. These Fe(CO)5 complexes show significant blue shifts in [small nu, Greek, macron]CO bands relative to those observed for free Fe(CO)5 as a result of it serving as a net electron donor to Au(i). Au(i) is a much stronger acceptor in (SIPr)Au-Mn(CO)5 compared to Ag(i) in (SIPr)Ag-Mn(CO)5. The structural details of Mes3PAu-Mn(CO)5 are also presented. [Fe(CO)4CN]- afforded CN bridged coinage metal complexes with (IPr*)Au+, (SIPr)Ag+ and (SIPr)Cu+ moieties, rather than molecules with direct Fe/coinage metal bonds. The computed total interaction energies indicate that both [Mn(CO)5]- and [Fe(CO)4CN]- are stronger donors toward Au(i) than Fe(CO)5. A detailed analysis of the bonding interactions between the coinage metal ions and Fe(CO)5, [Mn(CO)5]- and [Fe(CO)4CN]- suggests that the largest contribution comes from electrostatic attraction, while the covalent component follows the Dewar-Chatt-Duncanson model. The σ-donor interactions of these organometallic ligands with coinage metal ions are considerably stronger than the π-backbonding from the coinage metal ions.
Collapse
Affiliation(s)
- Tharun Teja Ponduru
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | | | | | | | |
Collapse
|