1
|
Liu YT, Zhang QQ, Yao SY, Zhao KY, Cui HW, Zhao HY, Li JY, Zou YL, Zhao LX. A near-infrared multifunctional fluorescent bio-probe with large stokes shift and high quantum yield for effective determination of heavy metal lead and pesticide glyphosate in vitro and vivo. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137017. [PMID: 39752835 DOI: 10.1016/j.jhazmat.2024.137017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 03/12/2025]
Abstract
Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.22 %), a large Stokes shift (220 nm), exceptional selectivity, and remarkable multi-cycle reversibility. It is capable of continuously and sensitively detecting Pb2 + and glyphosate (Glyp). Notably, DHB and DHB-Pb2+ ensemble have demonstrated exceptional detection capabilities for Pb2+ and Glyp in various real samples, including living HeLa cells, rice roots, zebrafish and mice, due to its enhanced metabolic rate and low toxicity. When combined with advanced imaging technology, this fluorescent biological probe serves as a powerful tool for the rapid and accurate detection of Pb2+ and Glyp in intricate environmental monitoring and biological systems.
Collapse
Affiliation(s)
- Ya-Tong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian-Qian Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Si-Yi Yao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Ke-Yu Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Wen Cui
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Hua-Yong Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing-Yi Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Ekas HM, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. Engineering a PbrR-Based Biosensor for Cell-Free Detection of Lead at the Legal Limit. ACS Synth Biol 2024; 13:3003-3012. [PMID: 39255329 DOI: 10.1021/acssynbio.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of-the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24-72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF.
Collapse
Affiliation(s)
- Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Chiaverini L, Tolbatov I, Marrone A, Marzo T, Biver T, La Mendola D. Unveiling the mechanism of activation of the Te(IV) prodrug AS101. New chemical insights towards a better understanding of its medicinal properties. J Inorg Biochem 2024; 256:112567. [PMID: 38669911 DOI: 10.1016/j.jinorgbio.2024.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
4
|
Wang D, Wei M, Zhao L, Song T, Li Q, Tan J, Tang J, Li Z, Zhu R. Development of a novel fluorescent protein-based probe for efficient detection of Pb 2+ in serum inspired by the metalloregulatory protein PbrR691. Anal Chim Acta 2024; 1305:342580. [PMID: 38677837 DOI: 10.1016/j.aca.2024.342580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The accurate and rapid detection of blood lead concentration is of paramount importance for assessing human lead exposure levels. Fluorescent protein-based probes, known for their high detection capabilities and low toxicity, are extensively used in analytical sciences. However, there is currently a shortage of such probes designed for ultrasensitive detection of Pb2+, and no reported probes exist for the quantitative detection of Pb2+ in blood samples. This study aims to fill this critical void by developing and evaluating a novel fluorescent protein-based probe that promises accurate and rapid lead quantification in blood. RESULTS A simple and small-molecule fluorescent protein-based probe was successfully constructed herein using a peptide PbrBD designed for Pb2+ recognition coupled to a single fluorescent protein, sfGFP. The probe retains a three-coordinate configuration to identify Pb2+ and has a high affinity for it with a Kd' of 1.48 ± 0.05 × 10-17 M. It effectively transfers the conformational changes of the peptide to the chromophore upon Pb2+ binding, leading to fast fluorescence quenching and a sensitive response to Pb2+. The probe offers a broad dynamic response range of approximately 37-fold and a linear detection range from 0.25 nM to 3500 nM. More importantly, the probe can resist interference of metal ions in living organisms, enabling quantitative analysis of Pb2+ in the picomolar to millimolar range in serum samples with a recovery percentage of 96.64%-108.74 %. SIGNIFICANCE This innovative probe, the first to employ a single fluorescent protein-based probe for ultrasensitive and precise analysis of Pb2+ in animal and human serum, heralds a significant advancement in environmental monitoring and public health surveillance. Furthermore, as a genetically encoded fluorescent probe, this probe also holds potential for the in vivo localization and concentration monitoring of Pb2+.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China; Nanning New Technology Entrepreneur Center, Nanning, 530006, China.
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Liu Zhao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Tianyu Song
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Qunfang Li
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Jiaxin Tan
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Jing Tang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| | - Rukui Zhu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
5
|
Wu X, Yuan H, Zhao R, Wang P, Yuan M, Cao H, Ye T, Xu F. Mechanisms of ssDNA aptamer binding to Cd 2+ in aqueous solution: A molecular dynamics study. Int J Biol Macromol 2023; 251:126412. [PMID: 37598831 DOI: 10.1016/j.ijbiomac.2023.126412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ssDNA aptamers have been increasingly used to detect heavy metal ions as recognition elements due to their high affinity and specificity. However, the specific recognition and binding mechanisms between aptamers and most heavy metals were still unclear, which limits the development of aptamer-based detection methods. In this work, the interaction mechanisms of CD-2-1 aptamers with Cd2+ in aqueous solutions were investigated using molecular dynamic simulations. The most stable complex was found where Cd2+ binding at aptamer's stem-loop junction and preferred at the phosphate backbone or bases. Noteworthily, two binding modes of Cd2+ combining aptamer in aqueous solution were discovered: direct and indirect. In the former mode, Cd2+ directly coordinated O atoms of bases. For the latter, Cd2+ connected to bases with coordinated water molecules as bridges. Electrostatic interaction was found to be the main driving force, and differences of residues role between two binding modes were elucidated. Buffer molecules in aqueous solutions can stabilize aptamer-Cd2+ complex by hydrogen bonds. This study revealed the specific interaction mechanisms of aptamer with Cd2+ at an atomic level, which provided theoretical references for aptamer-based Cd2+ detection methods establishment as well as an efficient technical route of screening potential aptamers for heavy metal ions.
Collapse
Affiliation(s)
- Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongen Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Zhao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pengsheng Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China..
| |
Collapse
|
6
|
Ronga L, Tolbatov I, Giorgi E, Pisarek P, Enjalbal C, Marrone A, Tesauro D, Lobinski R, Marzo T, Cirri D, Pratesi A. Mechanistic Evaluations of the Effects of Auranofin Triethylphosphine Replacement with a Trimethylphosphite Moiety. Inorg Chem 2023; 62:10389-10396. [PMID: 37342994 PMCID: PMC10324304 DOI: 10.1021/acs.inorgchem.3c01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/23/2023]
Abstract
Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.
Collapse
Affiliation(s)
- Luisa Ronga
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Iogann Tolbatov
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Paisos Catalans 16, 43007 Tarragona, Spain
| | - Ester Giorgi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Paulina Pisarek
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Christine Enjalbal
- IBMM,
Université de Montpellier, CNRS, ENSCM, UMR 5247, 34293 Montpellier, France
| | - Alessandro Marrone
- Department
of Pharmacy, University “G. D’Annunzio”
Chieti-Pescara, Via dei
Vestini, 31, 66100 Chieti, Italy
| | - Diego Tesauro
- Department
of Pharmacy and CIRPeB, Università
degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Ryszard Lobinski
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
- Chair
of Analytical Chemistry, Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tiziano Marzo
- Department
of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Damiano Cirri
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Alessandro Pratesi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
7
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Tolbatov I, Marrone A. Selenocysteine of thioredoxin reductase as the primary target for the antitumor metallodrugs: A computational point of view. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Computational strategies to model the interaction and the reactivity of biologically-relevant transition metal complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Tolbatov I, Marzo T, Coletti C, La Mendola D, Storchi L, Re N, Marrone A. Reactivity of antitumor coinage metal-based N-heterocyclic carbene complexes with cysteine and selenocysteine protein sites. J Inorg Biochem 2021; 223:111533. [PMID: 34273714 DOI: 10.1016/j.jinorgbio.2021.111533] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The reaction of the antitumor M(I)-bis-N-heterocyclic carbene (M(I)-NHC) complexes, M = Cu, Ag, and Au, with their potential protein binding sites, i.e. cysteine and selenocysteine, was investigated by means of density functional theory approaches. Capped cysteine and selenocysteine were employed to better model the corresponding residues environment within peptide structures. By assuming the neutral or deprotonated form of the side chains of these amino acids and by considering the possible assistance of an external proton donor such as an adjacent acidic residue or the acidic component of the surrounding buffer environment, we devised five possible routes leading to the binding of the investigated M(I)-NHC scaffolds to these protein sites, reflecting their different location in the protein structure and exposure to the bulk. The targeting of either cysteine or selenocysteine in their neutral forms is a kinetically unfavored process, expected to be quite slow if observable at all at physiological temperature. On the other hand, the reaction with the deprotonated forms is much more favored, even though an external proton source is required to assist the protonation of the leaving carbene. Our calculations also show that all coinage metals are characterized by a similar reactivity toward the binding of cysteine and selenocysteine sites, although the Au(I) complex has significantly higher reaction and activation free energies compared to Cu(I) and Ag(I).
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne Franche-Comté(UBFC), Avenue Alain Savary 9, 21078 Dijon, France; Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; CISUP - Centre for Instrumentation Sharing (Centro per l'Integrazione della Strumentazione Scientifica), University of Pisa, Italy; University Consortium for Research in the Chemistry of Metal ions in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; University Consortium for Research in the Chemistry of Metal ions in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Loriano Storchi
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università "G d'Annunzio" Chieti-Pescara, Via dei Vestini, Chieti, Italy
| |
Collapse
|
11
|
Tolbatov I, Marrone A. Molecular dynamics simulation of the Pb(II) coordination in biological media via cationic dummy atom models. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02718-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe coordination of Pb(II) in aqueous solutions containing thiols is a pivotal topic to the understanding of the pollutant potential of this cation. Based on its hard/soft borderline nature, Pb(II) forms stable hydrated ions as well as stable complexes with the thiol groups of proteins. In this paper, the modeling of Pb(II) coordination via classical molecular dynamics simulations was investigated to assess the possible use of non-bonded potentials for the description of the metal–ligand interaction. In particular, this study aimed at testing the capability of cationic dummy atom schemes—in which part of the mass and charge of the Pb(II) is fractioned in three or four sites anchored to the metal center—in reproducing the correct coordination geometry and, also, in describing the hard/soft borderline character of this cation. Preliminary DFT calculations were used to design two topological schemes, PB3 and PB4, that were subsequently implemented in the Amber force field and employed in molecular dynamics simulation of either pure water or thiol/thiolate-containing aqueous solutions. The PB3 scheme was then tested to model the binding of Pb(II) to the lead-sensing protein pbrR. The potential use of CDA topological schemes in the modeling of Pb(II) coordination was here critically discussed.
Collapse
|
12
|
Su F, Zhou W, Yang Y, Ou Y, Qi Z, Duan CK, Brik MG, Dorenbos P, Liang H. Structure, luminescence of Eu 2+ and Eu 3+ in CaMgSi 2O 6 and their co-existence for the excitation-wavelength/temperature driven colour evolution. Dalton Trans 2021; 50:10050-10058. [PMID: 34165118 DOI: 10.1039/d1dt01377g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent materials with controllable colour evolution features are demanded for the development of multi-level anti-counterfeiting technologies. Here we report the structural and luminescence properties of CaMgSi2O6:Ln (Ln = Eu2+, Eu3+, Eu2+/3+) samples in detail and reveal their excitation-wavelength/temperature driven colour evolution characteristics. By tuning either the excitation-wavelength (276, 304, 343, 394 nm) or temperature (in the 330-505 K range), the designed samples with co-existing Eu2+/Eu3+ ions can achieve diverse and controllable colour evolution from red, to pink, purple and blue. This shows their potential application in anti-counterfeiting with the help of sophisticated pattern design. In addition, the underlying mechanism of the Stokes shift of the Eu2+ emission and valence stability of both Eu2+/Eu3+ ions in CaMgSi2O6 are also studied in depth. These results are valuable for designing colour-controllable luminescent materials based on the co-existence of the Eu2+/Eu3+ ions for anti-counterfeiting applications.
Collapse
Affiliation(s)
- Fang Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Weijie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yunlin Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yiyi Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chang-Kui Duan
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Mikhail G Brik
- College of Sciences & CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China and Institute of Physics, University of Tartu, Tartu 50411, Estonia and Institute of Physics, Jan Długosz University, PL-42200 Częstochowa, Poland
| | - Pieter Dorenbos
- Faculty of Applied Sciences, Delft University of Technology, 2629 JB, Delft, The Netherlands
| | - Hongbin Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
13
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of arsenoplatin complex versus water and thiocyanate: a DFT benchmark study. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02694-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSeven different density functionals, including GGAs, meta-GGAs, hybrids and range-separated hybrids, and considering Grimme’s empirical dispersion correction (M06-L, M06-2X, PBE0, B3LYP, B3LYP-D3, CAM-B3LYP, ωB97X) have been tested for their performance in the prediction of molecular structures, energies and energy barriers for a class of newly developed antitumor platinum complexes involving main group heavy elements such as arsenic. The calculated structural parameters, energies and energy barriers have been compared to the available experimental data. The results show that range-separated hybrid functionals CAM-B3LYP and ωB97X give good results in predicting both geometrical parameters and isomerization energies and barrier heights and are promising new tools for the theoretical study of novel platinum(II) arsenic compounds.
Collapse
|
14
|
Barresi E, Tolbatov I, Pratesi A, Notarstefano V, Baglini E, Daniele S, Taliani S, Re N, Giorgini E, Martini C, Da Settimo F, Marzo T, La Mendola D. A mixed-valence diruthenium(II,III) complex endowed with high stability: from experimental evidence to theoretical interpretation. Dalton Trans 2020; 49:14520-14527. [PMID: 33048079 DOI: 10.1039/d0dt02527e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein report the synthesis and multi-technique characterization of [Ru2Cl((2-phenylindol-3-yl)glyoxyl-l-leucine-l-phenylalanine)4], a novel diruthenium(ii,iii) complex obtained by reacting [Ru2(μ-O2CCH3)4Cl] with a dual indolylglyoxylyl dipeptide anticancer agent. We soon realised that the compound is very stable under several different conditions including aqueous buffers or organic solvents. It is also completely unreactive toward proteins. The high stability is also suggested by cellular experiments in a glioblastoma cell line. Indeed, while the parent ligand exerts high cytotoxic effects in the low μM range, the complex is completely non-cytotoxic against the same line, most probably because of the lack of ligand release. To investigate the reasons for such high stability, we carried out DFT calculations that are fully consistent with the experimental findings. The results highlight that the stability of [Ru2Cl((2-phenylindol-3-yl)glyoxyl-l-leucine-l-phenylalanine)4] relies on the nature of the ligand, including its steric hindrance that prevents the reaction of any nucleophilic group with the Ru2 core. Ligand displacement is the key step to allow reactivity with the biological targets of metal-based prodrugs. Accordingly, we discuss the implications of some important aspects that should be considered when active molecules are chosen as ligands for the synthesis of paddle-wheel-like complexes with medicinal applications.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| | - Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy. and CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy. and CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy. and CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy. and CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy. and CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| |
Collapse
|
15
|
Tolbatov I, Cirri D, Marchetti L, Marrone A, Coletti C, Re N, La Mendola D, Messori L, Marzo T, Gabbiani C, Pratesi A. Mechanistic Insights Into the Anticancer Properties of the Auranofin Analog Au(PEt 3)I: A Theoretical and Experimental Study. Front Chem 2020; 8:812. [PMID: 33195032 PMCID: PMC7531625 DOI: 10.3389/fchem.2020.00812] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Au(PEt3)I (AF-I hereafter), the iodide analog of the FDA-approved drug auranofin (AF hereafter), is a promising anticancer agent that produces its pharmacological effects through interaction with non-genomic targets such as the thioredoxin reductase system. AF-I is endowed with a very favorable biochemical profile showing potent in vitro cytotoxic activity against several cancer types including ovarian and colorectal cancer. Remarkably, in a recent publication, some of us reported that AF-I induces an almost complete and rapid remission in an orthotopic in vivo mouse model of ovarian cancer. The cytotoxic potency does not bring about highly severe side effects, making AF-I very well-tolerated even for higher doses, even more so than the pharmacologically active ones. All these promising features led us to expand our studies on the mechanistic aspects underlying the antitumor activity of AF-I. We report here on an integrated experimental and theoretical study on the reactivity of AF-I, in comparison with auranofin, toward relevant aminoacidic residues or their molecular models. Results point out that the replacement of the thiosugar moiety with iodide significantly affects the overall reactivity toward the amino acid residues histidine, cysteine, methionine, and selenocysteine. Altogether, the obtained results contribute to shed light into the enhanced antitumoral activity of AF-I compared with AF.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Pisa, Italy
| | - Lorella Marchetti
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Pisa, Italy
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Cecilia Coletti
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Nazzareno Re
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "U. Schiff", University of Florence, Florence, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Jia X, Li Y, Xu T, Wu K. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnol Bioeng 2020; 117:3820-3834. [PMID: 32740905 DOI: 10.1002/bit.27525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Cell surface display of heavy metal-binding proteins has been used to enhance the adsorption capacity of heavy metals and the engineered microbial cells can be potentially used for the bioremediation of heavy metals. In this study, the proteins PbrR, PbrR691, and PbrD from the Cupriavidus metallidurans strain CH34 were displayed on the extracellular membrane of Escherichia coli BL21 cells, with the N-domain of ice-nucleation protein as the anchor protein to achieve specific adsorption of lead ions (Pb2+ ) and bioremediation of lead in the soil. The localization of fusion proteins was confirmed by western blot analysis. We investigated the effects of fusion pattern, expression level, heavy metal concentration, and the presence of other heavy metal ions on the adsorption of Pb2+ by these engineered bacteria, and the optimal linker peptide (flexible linker) and inducer concentration (0.5 mM) were obtained. The engineered bacteria showed specific selectivity and strong adsorption capacity for Pb2+ . The maximum Pb2+ adsorption capacity of strains displaying the three proteins (PbrR, PbrR691, and PbrD) were 942.1-, 754.3-, and 864.8-μmol/g cell dry weight, respectively, which was the highest reported to date. The engineered E. coli bacteria were also applied to Pb2+ -contaminated soil and the detoxification effects were observed via the seed germination test and the growth of Nicotiana benthamiana in comparison with the control BL21, which provides the proof-of-concept for in situ remediations of Pb2+ -contaminated water or soil.
Collapse
Affiliation(s)
- Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Ying Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kang Wu
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
17
|
Tolbatov I, Marzo T, Cirri D, Gabbiani C, Coletti C, Marrone A, Paciotti R, Messori L, Re N. Reactions of cisplatin and cis-[PtI 2(NH 3) 2] with molecular models of relevant protein sidechains: A comparative analysis. J Inorg Biochem 2020; 209:111096. [PMID: 32485478 DOI: 10.1016/j.jinorgbio.2020.111096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 01/01/2023]
Abstract
Quite surprisingly, cisplatin and cis-[PtI2(NH3)2] were found to manifest significant differences in their reactions with the model protein lysozyme. We decided to explore whether these differences recur when reacting these two Pt compounds with other proteins. Notably, ESI-MS measurements carried out on cytochrome c nicely confirmed the reaction pattern observed for lysozyme. This prompted us to exploit a computational DFT approach to disclose the molecular basis of such behavior. We analyzed comparatively the reactions of cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] with appropriate molecular models (Ls) of the sidechains of relevant aminoacids. We found that when Pt(II) complexes are reacted with sulfur ligands both quickly lose their halide ligands and then the resulting cis-[Pt(L)2(NH3)2] species loses ammonia upon reaction with a ligand excess. In the case of imidazole, again cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] quickly lose their halide ligands but the resulting cis-[Pt(L)2(NH3)2] species does not lose ammonia by reaction with excess imidazole. These results imply that the two platinum complexes manifest a significantly different behavior in their reaction with representative small molecules in agreement with what observed in the case of model proteins. It follows that the protein itself must play a crucial role in triggering the peculiar reactivity of cis-[PtI2(NH3)2] and in governing the nature of the formed protein adducts. The probable reasons for the observed behavior are critically commented and discussed.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Damiano Cirri
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto F.no, Italy; Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi, 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi, 13, 56124 Pisa, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto F.no, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| |
Collapse
|
18
|
Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via Interaction with Cys136 and Cys155. Possible Implications in Pathophysiology. Molecules 2020; 25:molecules25040820. [PMID: 32070004 PMCID: PMC7070283 DOI: 10.3390/molecules25040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle.
Collapse
|
19
|
Tolbatov I, Coletti C, Marrone A, Re N. Insight into the Substitution Mechanism of Antitumor Au(I) N-Heterocyclic Carbene Complexes by Cysteine and Selenocysteine. Inorg Chem 2020; 59:3312-3320. [DOI: 10.1021/acs.inorgchem.0c00106] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
| |
Collapse
|
20
|
Todisco S, Latronico M, Gallo V, Re N, Marrone A, Tolbatov I, Mastrorilli P. Double addition of phenylacetylene onto the mixed bridge phosphinito-phosphanido Pt(i) complex [(PHCy 2)Pt(μ-PCy 2){κ 2P,O-μ-P(O)Cy 2}Pt(PHCy 2)](Pt-Pt). Dalton Trans 2020; 49:6776-6789. [PMID: 32374320 DOI: 10.1039/d0dt00923g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the dinuclear phosphinito bridged complex [(PHCy2)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(PHCy2)](Pt-Pt) (1) with phenylacetylene affords the η1-alkenyl-μ,η1:η2-alkynyl complex [(η1-trans-(Ph)HC[double bond, length as m-dash]CH)(PHCy2)Pt(μ-PCy2)(μ,η1:η2-PhC[triple bond, length as m-dash]C)Pt{κP-P(O)Cy2}(PHCy2)] (4) displaying a σ-bonded 2-phenylethenyl ligand and an alkynyl (μ-κCα:η2) bridge between the platinum atoms. Complex 4 was shown to form in two steps: initially, the attack of the first molecule of phenylacetylene gives the σ-acetylide complex [(PHCy2)(η1-PhC[triple bond, length as m-dash]C)Pt1(μ-PCy2)Pt2(PHCy2){κP-P(OH)Cy2}](Pt-Pt) (5) featuring an intramolecular π-type hydrogen bond between the POH and the C[triple bond, length as m-dash]C triple bond; fast reaction of 5 with a second molecule of phenylacetylene results in the oxidative addition of the terminal C-H bond of the second alkyne to Pt1 that, after rearrangements, leads to 4. When left in solution for two weeks, complex 4 spontaneously isomerizes completely to [(PHCy2)(η1-trans-(Ph)HC[double bond, length as m-dash]CH)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(η1-PhC[triple bond, length as m-dash]C)(PHCy2)] (7) displaying a 2-phenylethenyl ligand and a phenylethynyl group both σ-bonded to the metal. Density functional calculations at the B3LYP/LACV3P++**//DFT/LACVP* level were carried out to study the thermodynamics of the formation of all considered complexes and to trace the mechanism of formation of the observed products.
Collapse
Affiliation(s)
- Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Mario Latronico
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Nazzareno Re
- Dipartimento di Farmacia, Università di Chieti, Italy.
| | | | | | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|