1
|
Zhang C, Dou L, Wang X, Xu K, Chen J, Zhan F, Li G, Yang YF, She Y. Carbazolylpyridine ( cp)-based tetradentate platinum(II) complexes containing fused 6/5/6 metallocycles. Dalton Trans 2025; 54:3256-3265. [PMID: 39829288 DOI: 10.1039/d4dt02743d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A series of carbazolylpyridine (cp)-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties. Time-dependent density functional theory (TD-DFT) and natural transition orbital (NTO) calculations reveal that the cp-based Pt(II) complexes have a metal-to-ligand charge transfer (3MLCT) state mixed with ligand-centered (3LC) and intra-ligand charge-transfer (3ILCT) characteristics. Pt(cp-1) shows strong red luminescence with a dominant peak at 611 nm and an excited-state lifetime of 10.7 μs in dichloromethane at room temperature, 602 nm and 10.9 μs in toluene, and 602 nm and 8.2 μs in PMMA films. It also exhibits high photoluminescence quantum efficiencies of 85%, 84% and 60% in dichloromethane, toluene and PMMA, respectively. These studies indicate the potential application of the cp-based Pt(II) complexes as phosphorescent emitters in the field of organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Chengyao Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Lijie Dou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Jianqiang Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| |
Collapse
|
2
|
Matharu GK, Soto MA, Huang BZ, Lelj F, MacLachlan MJ. Exploring the Metal-Centered Reactivity of Isomeric, N-Bridged Biscyclometalated Platinum(II) Complexes. Chemistry 2025:e202404458. [PMID: 39794290 DOI: 10.1002/chem.202404458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands. Here, we report the synthesis and characterization of two new PtII complexes bearing tetradentate N-bridged bis(phenylpyridine) ligands with N^C*C^N and C^N*N^C coordinating atoms. Through chemical oxidation with PhICl2 and N-chlorosuccinimide, we obtained four new complexes containing PtIV and PtIII centres. The dynamics of the PtIII complexes were explored by variable-temperature NMR studies and showed surprisingly free rotation of the appended N-aryl group. This work uncovers the importance of the destabilizing nature of the bulky N-aryl group on intermetallic bonds, and sheds light on how the molecular rotation observed in the PtIII compounds could inspire new molecular rotors driven by intermetallic bonds.
Collapse
Affiliation(s)
- Gunwant K Matharu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Miguel A Soto
- Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Ben Zhen Huang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata, Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
- University of British Columbia, Stewart Blusson Quantum Matter Institute, 2355 East Mall, V6T 1Z4, Vancouver, British Columbia, Canada
- WPI Nano Life Science Institute, Kanazawa University, 920-1192, Kanazawa, Japan
| |
Collapse
|
3
|
Zhou F, Pan Y, Hung WY, Chen CF, Chen KM, Li JL, Yiu SM, Liu YM, Chou PT, Chi Y, Lau KC. Tetradentate Pt(II) Complexes Based on Xylenylamino Linked Dual Pyrazolate Chelates for Organic Light Emitting Diodes. Chemistry 2024; 30:e202402636. [PMID: 39109460 DOI: 10.1002/chem.202402636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Indexed: 10/04/2024]
Abstract
In this work, we report the syntheses of three Pt(II) emitters, namely, Pt4N1, Pt4N2, and Pt4N3, to which their tetradentate chelates were assembled by linking two pyrazolate chelates with a single xylenylamino entity. Functionalization of Pt4N1 was achieved upon the addition of electronegative CF3 substituent on pyridinyl groups and switching to more electron-deficient pyrazinyl groups in giving Pt4N2 and Pt4N3, respectively. The vertically arranged xylenylamino entity has effectively suppressed the inter-molecular π-π stacking and Pt⋅⋅⋅Pt interaction, as shown by the single crystal X-ray structural analyses. Upon fabrication of OLED devices, Pt4N2 and Pt4N3 based devices delivered efficient cyan and green emission, with an EQEmax of 15.2 % and 11.2 %, respectively, affirming the successfulness of the tetradentate chelating strategy.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ching-Feng Chen
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Kui-Ming Chen
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Jian-Liang Li
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Yi-Mei Liu
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| |
Collapse
|
4
|
Zhan F, Lin GL, Zhang TS, Xu K, Yang YF, Li G, She Y. Pt-S Bond-Enabled Temperature-Dependent Phosphorescence in S-Heteroaryl Tetradentate Pt(S^C^N^O) Complexes. Inorg Chem 2024; 63:8822-8831. [PMID: 38696545 DOI: 10.1021/acs.inorgchem.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.
Collapse
Affiliation(s)
- Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guo-Liang Lin
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
5
|
Li G, Liu Y, Xu K, Zhang C, Chen J, Chu Q, Yang YF, She Y. Perimidocarbene-Based Tetradentate Platinum(II) Complexes with an Unexpectedly Negligible 3MLCT Character. Inorg Chem 2024; 63:6435-6444. [PMID: 38537132 DOI: 10.1021/acs.inorgchem.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Two novel six-membered perimidocarbene (PIC)-based tetradentate Pt(II) complexes were designed and successfully synthesized. Systematical experimental and theoretical studies suggest that the PIC moiety greatly affects the frontier orbitals, as well as the photophysical and excited-state properties of the Pt(II) complexes. PtYK2 has a broad emission spectrum peaking at 576 nm with a shoulder band at 620 nm, along with a full width at half-maximum (FWHM) value of 100.0 nm at 77 K in 2-MeTHF; however, the emission spectrum is slightly red-shifted with a dominant peak at 610 nm and a FWHM value of 125.0 nm at room temperature in a poly(methyl methacrylate) (PMMA) film. Time-dependent-density functional theory and natural transition orbital analyses reveal that PtYK2 has a 3LC (3πPIC* → πPIC)-dominated character with an unexpectedly negligible contribution of 3MLCT transition (0.68%) in the T1 state, which results in a broad emission spectrum and a relatively low quantum efficiency of 7.4% in the PMMA film.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuankuo Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chengyao Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianqiang Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qingshan Chu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
6
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
7
|
Sun Y, Zhan F, Huang D, Wang X, Dou L, Xu K, Yang YF, Li G, She Y. 8-Phenylquinoline-Based Tetradentate 6/6/6 Platinum(II) Complexes for Near-Infrared Emitters. Inorg Chem 2023; 62:13156-13164. [PMID: 37531143 DOI: 10.1021/acs.inorgchem.3c02356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of novel tetradentate 6/6/6 Pt(II) complexes containing an 8-phenylquinoline-benzo[d]imidazole-carbazole ligand was designed; the Pt(II) complexes could be synthesized by metalizing the corresponding ligand with K2PtCl4 in high isolated yields of 60-90%. Experimental and theoretical studies suggested that the ligand modification of the quinoline moieties of the Pt(II) complexes could tune their electrochemical, photophysical, and excited-state properties. Notably, all the Pt(II) complexes exhibited highly electrochemical stabilities with reversible redox processes except the quasi-reversible reduction of PtYL3. The large π-conjugation of the ligand together with increased metal-to-ligand charge-transfer (3MLCT) characters in T1 states enabled the Pt(II) complexes to show broad Gaussian-type NIR emission spectra with high photoluminescence quantum efficiencies of 1.2-1.5% and short τ of 0.8-1.5 μs in dichloromethane at room temperature. This work should provide a valuable reference for the design and development of monomer NIR emitters.
Collapse
Affiliation(s)
- Yulu Sun
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Disheng Huang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lijie Dou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
8
|
Kim JM, Cheong K, Jiang J, Jeon SO, Hong WP, Lee JY. Tetradentate Pt complexes for organic light-emitting diodes. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Li X, Zang CX, Gao Y, Wen LL, Shao KZ, Ding GY, Shan GG, Xie WF, Su ZM. Novel Ir(III) Complexes with NHC-Based Ancillary Ligands for Efficient Nondoped OLEDs. Inorg Chem 2022; 61:20299-20307. [DOI: 10.1021/acs.inorgchem.2c02702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Li
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Chun-Xiu Zang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Ying Gao
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Li-Li Wen
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Kui-Zhan Shao
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Guan-Yu Ding
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wen-Fa Xie
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
10
|
Zhang HH, Jing J, Xu G, Song YX, Wu SX, Chen XH, Zhang DS, Zhang XP, Shi ZF. Circularly polarized luminescence of pinene-modified tetradentate platinum(II) enantiomers containing fused 5/6/6 metallocycles. Heliyon 2022; 8:e11358. [PMID: 36387510 PMCID: PMC9649974 DOI: 10.1016/j.heliyon.2022.e11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, a couple of tetradentate Pt(II) enantiomers ((−)-1 and (+)-1) and a couple of tetradentate Pt(IV) enantiomers ((−)-2 and (+)-2) containing fused 5/6/6 metallocycles have been synthesized by controlling reaction conditions. Two valence forms could transform into each other through mild chemical oxidants and reductants. Single-crystal X-ray diffraction confirms the structures of (−)-1 and (−)-2. The coordination sphere of the Pt(II) cation in (−)-1 displays a distorted square-planar geometry and a platinum centroid helix chirality. In contrast, the structure of (−)-2 reveals a distorted octahedral geometry. The solution and the solid of (−)-1 are highly luminescent. Complex (−)-1 shows a prominent aggregation-induced emission enhancement (AIEE) behavior in DMSO/water solution with emission quantum yield (Φem) up to 73.2%. Furthermore, highly phosphorescent Pt(II) enantiomers exhibit significant circularly polarized luminescence (CPL) with a dissymmetry factor (glum) of order 10−3 in CH2Cl2 solutions at room temperature. Symmetrically appreciable CPL signals are observed for the enantiomers (−)-1 and (+)-1.
Collapse
|
11
|
Gutierrez Suburu ME, Maisuls I, Kösters J, Strassert CA. Room-temperature luminescence from Pd(II) and Pt(II) complexes: from mechanochromic crystals to flexible polymer matrices. Dalton Trans 2022; 51:13342-13350. [PMID: 35983882 DOI: 10.1039/d2dt01693a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Pd(II) (PdLOMe, PdLOHex) and Pt(II) (PtLOMe, PtLOHex) complexes bearing tetradentate ligands as dianionic luminophores were synthesized. Hence, the cyclometallating chelators were alternatively decorated with two n-hexyloxy (LOHex) or two methoxy (LOMe) moieties to promote crystallization and processability. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry as well as by single crystal X-ray diffractometric analysis (PtLOMe and PdLOMe). Steady state and time-resolved photoluminescence spectroscopic studies were carried out in crystalline phases, in fluid solutions at room temperature, in frozen glassy matrices at 77 K and in a flexible polymeric matrix (PMMA). PtLOMe presents an intriguing mechanochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Incorporation of the Pd(II) complexes into the polymeric matrix boosts their photophysical properties by stiffening of the coordination environment while reducing non-radiative deactivation pathways mediated by dissociative metal-centred states, which also become thermally inaccessible at 77 K.
Collapse
Affiliation(s)
- Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| |
Collapse
|
12
|
Han J, Wang Y, Wang J, Wu C, Zhang X, Yin X. Amplification of circularly polarized luminescence from chiral cyclometalated platinum(II) complexes by the formation of excimer. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Li G, Wen J, Zhan F, Lou W, Yang YF, Hu Y, She Y. Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorg Chem 2022; 61:11218-11231. [PMID: 35834800 DOI: 10.1021/acs.inorgchem.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl (bp)-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the bp-based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change. All the bp-based Pt(II) emitters exhibited vibronically featured emission spectra with dominant peaks at 502-505 nm and photoluminescent quantum yields of 24-34% in dichloromethane solution. Green OLED using Pt(bp-12) as an emitter achieved a maximum brightness (Lmax) of 16,644 cd/m2.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianfeng Wen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
14
|
Li G, Guo H, Fang X, Yang Y, Sun Y, Lou W, Zhang Q, She Y. Tuning the Excited State of Tetradentate Pd(
II
) and Pt(
II
) Complexes through Benzannulated
N
‐Heteroaromatic
Ring and Central Metal. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guijie Li
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Hua Guo
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xiaoli Fang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yun‐Fang Yang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yulu Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Weiwei Lou
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yuanbin She
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
15
|
Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, Tanski JM, Anderson CM. Photophysical Properties of Cyclometalated Platinum(II) Diphosphine Compounds in the Solid State and in PMMA Films. ACS OMEGA 2021; 6:28316-28325. [PMID: 34723028 PMCID: PMC8552474 DOI: 10.1021/acsomega.1c04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.
Collapse
Affiliation(s)
- Belle Coffey
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Lily Clough
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Ian C. McClellan
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
16
|
Buil ML, Esteruelas MA, López AM. Recent Advances in Synthesis of Molecular Heteroleptic Osmium and Iridium Phosphorescent Emitters. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Ana M. López
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| |
Collapse
|
17
|
She Y, Xu K, Fang X, Yang YF, Lou W, Hu Y, Zhang Q, Li G. Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorg Chem 2021; 60:12972-12983. [PMID: 34374530 DOI: 10.1021/acs.inorgchem.1c01405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel tetradentate Pt(II) and Pd(II) complexes containing fused 6/6/6 or 6/6/5 metallocycles employing azacarbazolylcarbazole (ACzCz)-based ligands was developed. Systematic experimental and theoretical studies suggest that both the ligand structures and the central metal ions have great influences on the electrochemical and photophysical properties of the complexes. The time-dependent density functional theory (TD-DFT) calculations and natural transition orbital (NTO) analyses reveal that the Pt(II) complexes possess 10.8-15.2% metal-to-ligand charge transfer (3MLCT) mixed with ligand-centered (3LC) characters, by contrast, the Pd(II) complexes exhibit significantly decreased 4.2-7.1% 3MLCT characters and enhanced 3LC compositions. All of the Pt(II) and Pd(II) complexes possess various channels for the intersystem crossing (ISC) on the basis of small energy gaps ΔES1-Tn and matching transition orbital compositions; moreover, Pd(ACzCz-1) and Pd(ACzCz-2) also possess efficient reverse intersystem crossing (RISC) to show both delayed fluorescence (DF) and phosphorescence in PMMA films at room temperature (RT). Pt(ACzCz-3) has ΦPL values of 57% with a τ of 5.1 μs in dichloromethane at RT and 50% with 3.9 μs in PMMA at RT. Notably, Pd(ACzCz-1) exhibits ultralong low-temperature phosphorescence with a τ of 1307 μs. Pt(ACzCz-2)-based green OLED employing 26mCPy as the host demonstrated a peak EQE of 8.2% and a Lmax of 24065 cd/m2.
Collapse
Affiliation(s)
- Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guijie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
18
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
19
|
Li G, Zheng J, Fang X, Xu K, Yang YF, Wu J, Cao L, Li J, She Y. N-Heterocyclic Carbene-Based Tetradentate Pd(II) Complexes for Deep-Blue Phosphorescent Materials. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Jianbing Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Kewei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Jiang Wu
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Linyu Cao
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Jian Li
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| |
Collapse
|
20
|
Shi C, Li F, Li Q, Zhao W, Cao Y, Zhao Q, Yuan A. B- and N-Embedded π-Conjugation Units Tuning Intermolecular Interactions and Optical Properties of Platinum(II) Complexes. Inorg Chem 2021; 60:525-534. [PMID: 33378182 DOI: 10.1021/acs.inorgchem.0c03078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of neutral and cationic platinum(II) complexes containing a B- or N-embedded π-conjugation unit has been prepared. Notably, significantly different intermolecular interactions (Pt-Pt, π-π, head to tail, and head to head) and interesting optical properties exist in these complexes, which can be attributed to the difference in spatial structures and π-electron properties between B- and N-embedded π-conjugation units. Unexpectedly, under a hypoxic atmosphere, N-embedded neutral complex PtNacac can display a distinct dual-emission with both fluorescence and phosphorescence, whereas only a single fluorescence emission was observed in the air, which is different from the B-embedded neutral complex PtBacac with only a single phosphorescence emission at any atmosphere, as well confirmed by lifetime measurement and oxygen sensing experiments. DFT calculations reveal that unusual ligand-to-metal charge transfer (LMCT) excited state character and low spin orbit coupling (SOC) elements can be found in N-embedded complexes due to the strong electron-donating ability of the N-embedded unit. Based on this, as a novel ratiometric oxygen probe with a simple structure, PtNacac can be successfully used to examine intracellular oxygen levels by monitoring both fluorescence and phosphorescence signals via ratiometric photoluminescence imaging and time-resolved luminescence imaging (TRLI) technology. This work provides a completely new idea for designing fluorescence/phosphorescence dual-emissive complexes.
Collapse
Affiliation(s)
- Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Yibo Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
21
|
Li G, Shen G, Fang X, Yang YF, Zhan F, Zheng J, Lou W, Zhang Q, She Y. Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles. Inorg Chem 2020; 59:18109-18121. [DOI: 10.1021/acs.inorgchem.0c02569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Gang Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Feng Zhan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Jianbing Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Weiwei Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| |
Collapse
|
22
|
Yu F, Sheng Y, Wu D, Qin K, Li H, Xie G, Xue Q, Sun Z, Lu Z, Ma H, Hang XC. Blue-Phosphorescent Pt(II) Complexes of Tetradentate Pyridyl–Carbolinyl Ligands: Synthesis, Structure, Photophysics, and Electroluminescence. Inorg Chem 2020; 59:14493-14500. [DOI: 10.1021/acs.inorgchem.0c02244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Feiling Yu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yongjian Sheng
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dandan Wu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ke Qin
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hongbo Li
- Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, Beijing 102500, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qin Xue
- Department of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Zhengyi Sun
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
23
|
Li G, Zheng J, Zhao X, Fleetham T, Yang YF, Wang Q, Zhan F, Zhang W, Fang K, Zhang Q, She Y. Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue Phosphorescent Materials. Inorg Chem 2020; 59:13502-13516. [DOI: 10.1021/acs.inorgchem.0c01907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jianbing Zheng
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Xiangdong Zhao
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Tyler Fleetham
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Qunmin Wang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Wenyue Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Kun Fang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
24
|
Benavent L, Boudreault PLT, Esteruelas MA, López AM, Oñate E, Tsai JY. Phosphorescent Iridium(III) Complexes with a Dianionic C,C′,N,N′-Tetradentate Ligand. Inorg Chem 2020; 59:12286-12294. [DOI: 10.1021/acs.inorgchem.0c01377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Llorenç Benavent
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | - Miguel A. Esteruelas
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| |
Collapse
|