1
|
Flach M, Hirsch K, Gitzinger T, Timm M, da Silva Santos M, Ablyasova OS, Kubin M, von Issendorff B, Lau JT, Zamudio-Bayer V. Abrupt Change from Ionic to Covalent Bonding in Nickel Halides Accompanied by Ligand Field Inversion. Inorg Chem 2024; 63:11812-11820. [PMID: 38857413 PMCID: PMC11200264 DOI: 10.1021/acs.inorgchem.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
The electronic configuration of transition metal centers and their ligands is crucial for redox reactions in metal catalysis and electrochemistry. We characterize the electronic structure of gas-phase nickel monohalide cations via nickel L2,3-edge X-ray absorption spectroscopy. Comparison with multiplet charge-transfer simulations and experimental spectra of selectively prepared nickel monocations in both ground- and excited-state configurations are used to facilitate our analysis. Only for [NiF]+ with an assigned ground state of 3Π can the bonding be described as predominantly ionic, while the heavier halides with assigned ground states of 3Π or 3Δ exhibit a predominantly covalent contribution. The increase in covalency is accompanied by a transition from a classical ligand field for [NiF]+ to an inverted ligand field for [NiCl]+, [NiBr]+, and [NiI]+, resulting in a leading 3d9 L̲ configuration with a ligand hole (L̲) and a 3d occupation indicative of nickel(I) compounds. Hence, the absence of a ligand hole in [NiF]+ precludes any ligand-based redox reactions. Additionally, we demonstrate that the shift in energy of the L3 resonance is reduced compared to that of isolated atoms upon the formation of covalent compounds.
Collapse
Affiliation(s)
- Max Flach
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Konstantin Hirsch
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Tim Gitzinger
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Martin Timm
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Mayara da Silva Santos
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Olesya S. Ablyasova
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Markus Kubin
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Bernd von Issendorff
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - J. Tobias Lau
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Vicente Zamudio-Bayer
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| |
Collapse
|
2
|
Pérez‐Bitrián A, Alvarez S, Baya M, Echeverría J, Martín A, Orduna J, Menjón B. Terminal Au-N and Au-O Units in Organometallic Frames. Chemistry 2023; 29:e202203181. [PMID: 36263870 PMCID: PMC10107225 DOI: 10.1002/chem.202203181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Since gold is located well beyond the oxo wall, chemical species with terminal Au-N and Au-O units are extremely rare and limited to low coordination numbers. We report here that these unusual units can be trapped within a suitable organometallic frame. Thus, the terminal auronitrene and auroxyl derivatives [(CF3 )3 AuN]- and [(CF3 )3 AuO]- were identified as local minima by calculation. These open-shell, high-energy ions were experimentally detected by tandem mass spectrometry (MS2 ): They respectively arise by N2 or NO2 dissociation from the corresponding precursor species [(CF3 )3 Au(N3 )]- and [(CF3 )3 Au(ONO2 )]- in the gas phase. Together with the known fluoride derivative [(CF3 )3 AuF]- , they form an interesting series of isoleptic and alloelectronic complexes of the highly acidic organogold(iii) moiety (CF3 )3 Au with singly charged anions X- of the most electronegative elements (X=F, O, N). Ligand-field inversion in all these [(CF3 )3 AuX]- species results in the localization of unpaired electrons at the N and O atoms.
Collapse
Affiliation(s)
- Alberto Pérez‐Bitrián
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Santiago Alvarez
- Departament de Química Inorgànica i Orgànica Facultat de QuímicaUniversitat de Barcelona08028BarcelonaSpain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Jorge Echeverría
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Jesús Orduna
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
3
|
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem Rev 2021; 121:9927-10000. [PMID: 34260198 DOI: 10.1021/acs.chemrev.1c00347] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Grünwald A, Anjana SS, Munz D. Terminal Imido Complexes of the Groups 9–11: Electronic Structure and Developments in the Last Decade. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Annette Grünwald
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - S. S. Anjana
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
5
|
Li L, Beckers H, Stüker T, Lindič T, Schlöder T, Andrae D, Riedel S. Molecular oxofluorides OMFn of nickel, palladium and platinum: oxyl radicals with moderate ligand field inversion. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01151g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-valent late transition metal oxo compounds attracted attention because of their peculiar metal–oxygen bond. Their oxo ligands exhibit an electrophilic and distinct radical oxyl (O˙−) rather than the more common nucleophilic (O2−) character.
Collapse
Affiliation(s)
- Lin Li
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Helmut Beckers
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Tony Stüker
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Tilen Lindič
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Theoretische Chemie
- 14195 Berlin
- Germany
| | - Tobias Schlöder
- Karlsruher Institut für Technologie
- Institut für Nanotechnologie
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Dirk Andrae
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Theoretische Chemie
- 14195 Berlin
- Germany
| | - Sebastian Riedel
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| |
Collapse
|
6
|
Baeza Cinco MÁ, Hayton TW. Progress toward the Isolation of Late Metal Terminal Sulfides. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Miguel Á. Baeza Cinco
- Department of Chemistry and Biochemistry University of California Santa Barbara 93106 Santa Barbara CA USA
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry University of California Santa Barbara 93106 Santa Barbara CA USA
| |
Collapse
|