1
|
Fragal EH, Metilli L, Pignon F, Halila S. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery. RSC Adv 2025; 15:2988-2995. [PMID: 39882005 PMCID: PMC11775502 DOI: 10.1039/d4ra08087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Supramolecular oleogels, in which low-molecular weight oleogelators self-assemble into various nanostructures through non-covalent interactions, have witnessed increasing research activity in various fields of science, including food, cosmetics or remediation of marine oil spills. Herein, we report a simple scalable and environmentally friendly carbohydrate-based oleogelator, namely, the sodium salt of N,N'-dimethyl β-C glucosyl barbiturate (GlcBMe) that self-assembles through sonication to induce the gelation of polar organic solvent and later of non-polar vegetable oils by cationic exchange with quaternary ammonium surfactants. Water-soluble GlcBMe was capable of forming self-assembled fibrillar network bridging insoluble particles in the oil by sonication in the presence of a small amount of water. The rheological properties are reinforced by in situ particle bridging with quaternary ammonium surfactants as evidenced by multi-scale structural analyses. IR analysis indicated that -OH (from carbohydrates) and -C[double bond, length as m-dash]O (from barbituric ring) were involved in hydrogen bonding promoting the formation of a fibrous network. The oleogel presented a non-Newtonian system showing a shear-thinning behavior and thixotropic properties. Advantageously, these oleogels showed excellent control and slow release of the loaded-vitamin E in a pH-dependent manner.
Collapse
Affiliation(s)
- Elizângela Hafemann Fragal
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Lorenzo Metilli
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| |
Collapse
|
2
|
Sagiri SS, Samateh M, John G. Investigating the Emulsifying Mechanism of Stereoisomeric Sugar Fatty Acyl Molecular Gelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13763-13772. [PMID: 38937253 PMCID: PMC11238593 DOI: 10.1021/acs.langmuir.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The emulsifying mechanism of supramolecular stereoisomeric sugar fatty acyl molecular gelators was evaluated. In-house-synthesized mannitol dioctanoate (M8) and sorbitol dioctanoate (S8) were tested. The stereoisomeric difference between the sugar groups significantly affected the gelation and emulsifying properties of the gelators. M8 and S8 formed oleogels at 2 and 3.5% (w/v) and emulsified water up to 30 and 60% (v/v), respectively. Microscopy showed that the gelator fibers are at the W/O interfaces, demonstrating a solid particle or network mode of stabilization. The long fibers of M8 were unable to completely encompass the water droplets, resulting in poor emulsification. Small, hair-like fibers of S8 showed better emulsification. When sunflower wax (SFW, 1% w/v) was added as a coemulsifier, synergetic action between the wax and S8 improved the stability of emulsions. Such synergy was not seen between SFW and M8, henceforth emulsion stability was not improved. This study proved that a subtle stereoisomeric difference at the molecular level can greatly alter the supramolecular and emulsifying properties of sugar-fatty acyl compounds.
Collapse
Affiliation(s)
- Sai Sateesh Sagiri
- Department
of Chemistry and Biochemistry, the City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Malick Samateh
- Department
of Chemistry and Biochemistry, the City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Doctoral
Program in Chemistry, the City University
of New York, Graduate
Center, New York, New York 10016, United States
| | - George John
- Department
of Chemistry and Biochemistry, the City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Doctoral
Program in Chemistry, the City University
of New York, Graduate
Center, New York, New York 10016, United States
| |
Collapse
|
3
|
Su Y, Zhang W, Liu R, Chang C, Li J, Xiong W, Yang Y, Gu L. Emulsion-Templated Liquid Oil Structuring with Egg White Protein Microgel- Xanthan Gum. Foods 2023; 12:foods12091884. [PMID: 37174422 PMCID: PMC10177941 DOI: 10.3390/foods12091884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, oleogels were prepared by the emulsion-template method using egg-white protein microgel as a gelator and xanthan gum (XG) as thickener. The physicochemical properties of the emulsion and oleogels were investigated. The adsorption of protein on the surface of the oil droplet reached saturation when the protein microgel concentration reached 2%. The excess protein combined with XG and accumulated on the outer layer of the oleogel, which prevented the emulsion from flocculation, enhanced the oil-holding capacity of the oleogel, and had a positive effect on preventing the oxidation of oil. When the concentration of XG was less than 0.4%, the EWP microgel, combined with the XG, stabilized the emulsion. As the concentration of XG was greater than 0.4%, excessive XG in the emulsion improved the viscosity and mechanical properties of the emulsion to prevent the aggregation of oil droplets. However, the change in XG concentration had no significant effect on the oxidation of the oil.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruidan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen Xiong
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| |
Collapse
|
4
|
Tsupko P, Sagiri SS, Samateh M, Satapathy S, John G. Self-assembled Trehalose Amphiphiles as Molecular Gels: A Unique Formulation to Wax-free Cosmetics. J SURFACTANTS DETERG 2023; 26:369-385. [PMID: 37252108 PMCID: PMC10211368 DOI: 10.1002/jsde.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023]
Abstract
Trehalose has been used as an emollient and antioxidant in cosmetics. However, we aimed to explore trehalose amphiphiles as oil structuring agents for the preparation of gel-based lip balms as part of wax-free cosmetics. This article describes the synthesis of trehalose fatty acyl amphiphiles and their corresponding oleogel-based lip balms. Trehalose dialkanoates were synthesized by esterifying the two primary hydroxyls of trehalose with fatty acids (C4-C12) using a facile, regioselective lipase catalysis. The gelation potential of as-synthesized amphiphiles was evaluated in organic solvents and vegetable oils. Stable oleogels were subjected to X-ray diffraction (XRD), thermal (DSC), and rheological studies and further used for the preparation of lip balms. Trehalose dioctanoate (Tr8), trehalose didecanoate (Tr10) were found to be super gelators as their minimum gelation concentration is ≤ 0.2 wt%. XRD studies revealed their hexagonal columnar molecular packing while forming the fibrillar networks. Rheometry proved that the fatty acyl chain length of amphiphiles can influence the strength and flow properties of oleogels. Further rheometry (at 25 °C, 37 °C, and 50 °C) and DSC studies have validated that Tr8- and Tr10-based oleogels are stable for commercial applications. Tr8- and Tr10-based olive oil oleogels were used for the preparation of lip balms. The preliminary results suggested that the cumulative effect of trehalose's emolliency and vegetable oil gelling nature can be achieved with trehalose amphiphiles, specifically, Tr8 and Tr10. This study has also demonstrated that Tr8- and Tr10-based lip balms can be used as an alternative to beeswax and plant wax lip balms, indicating their huge potential to succeed as a new paradigm to formulate wax-free cosmetics.
Collapse
Affiliation(s)
- Polina Tsupko
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Sai Sateesh Sagiri
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Malick Samateh
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| | - Sitakanta Satapathy
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - George John
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| |
Collapse
|
5
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Codină GG, Prisacaru AE. Structuring of Cold Pressed Oils: Evaluation of the Physicochemical Characteristics and Microstructure of White Beeswax Oleogels. Gels 2023; 9:gels9030216. [PMID: 36975665 PMCID: PMC10048366 DOI: 10.3390/gels9030216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of the study was to characterize the gelling effect of beeswax (BW) using different types of cold pressed oil. The organogels were produced by hot mixing sunflower oil, olive oil, walnut oil, grape seed oil and hemp seed oil with 3%, 7% and 11% beeswax. Characterization of the oleogels was done using Fourier transform infrared spectroscopy (FTIR), the chemical and physical properties of the oleogels were determined, the oil binding capacity was estimated and the SEM morphology was studied. The color differences were highlighted by the CIE Lab color scale for evaluating the psychometric index of brightness (L*), components a and b. Beeswax showed excellent gelling capacity at 3% (w/w) of 99.73% for grape seed oil and a minimum capacity of 64.34%for hemp seed oil. The value of the peroxide index is strongly correlated with the oleogelator concentration. Scanning electron microscopy described the morphology of the oleogels in the form of overlapping structures of platelets similar in structure, but dependent on the percentage of oleogelator added. The use in the food industry of oleogels from cold-pressed vegetable oils with white beeswax is conditioned by the ability to imitate the properties of conventional fats.
Collapse
|
6
|
Mondal B, Gupta VK, Hansda B, Bhoumik A, Mondal T, Majumder HK, Edwards-Gayle CJC, Hamley IW, Jaisankar P, Banerjee A. Amino acid containing amphiphilic hydrogelators with antibacterial and antiparasitic activities. SOFT MATTER 2022; 18:7201-7216. [PMID: 36098333 DOI: 10.1039/d2sm00562j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale self-assembly of peptide constructs represents a promising means to present bioactive motifs to develop new functional materials. Here, we present a series of peptide amphiphiles which form hydrogels based on β-sheet nanofibril networks, several of which have very promising anti-microbial and anti-parasitic activities, in particular against multiple strains of Leishmania including drug-resistant ones. Aromatic amino acid based amphiphilic supramolecular gelators C14-Phe-CONH-(CH2)n-NH2 (n = 6 for P1 and n = 2 for P3) and C14-Trp-CONH-(CH2)n-NH2 (n = 6 for P2 and n = 2 for P4) have been synthesized and characterized, and their self-assembly and gelation behaviour have been investigated in the presence of ultrapure water (P1, P2, and P4) or 2% DMSO(v/v) in ultrapure water (P3). The rheological, morphological and structural properties of the gels have been comprehensively examined. The amphiphilic gelators (P1 and P3) were found to be active against both Gram-positive bacteria B. subtilis and Gram-negative bacteria E. coli and P. aeruginosa. Interestingly, amphiphiles P1 and P3 containing an L-phenylalanine residue show both antibacterial and antiparasitic activities. Herein, we report that synthetic amphiphiles with an amino acid residue exhibit a potent anti-protozoan activity and are cytotoxic towards a wide array of protozoal parasites, which includes Indian varieties of Leishmania donovani and also kill resistant parasitic strains including BHU-575, MILR and CPTR cells. These gelators are highly cytotoxic to promastigotes of Leishmania and trigger apoptotic-like events inside the parasite. The mechanism of killing the parasite is shown and these gelators are non-cytotoxic to host macrophage cells indicating the potential use of these gels as therapeutic agents against multiple forms of leishmaniasis in the near future.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Vivek Kumar Gupta
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700 032, India.
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Arpita Bhoumik
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 2A & 2B Raja S. C. Mullick Road, Kolkata-700 032, India
| | - Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Hemanta K Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 2A & 2B Raja S. C. Mullick Road, Kolkata-700 032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Parasuraman Jaisankar
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700 032, India.
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
7
|
Han W, Chai X, Liu Y, Xu Y, Tan CP. Crystal network structure and stability of beeswax-based oleogels with different polyunsaturated fatty acid oils. Food Chem 2022; 381:131745. [PMID: 35124493 DOI: 10.1016/j.foodchem.2021.131745] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 01/14/2023]
Abstract
The effect of different types of oils including camellia oil (CLO), sunflower oil (SFO), corn oil (CO) and linseed oil (LO) on the formation, crystal network structure and mechanical properties of 4%wt beeswax (BW) in oleogel was investigated. BW oleogels containing oils with higher contents of polyunsaturated fatty acids gelled first (1%wt), especially LO with higher contents of linolenic acid rather than CLO with higher contents of monounsaturated fatty acids. In comparison, oils with higher polyunsaturated fatty acid contents exhibited higher Db with more extensive microstructure at different cooling rates, which was related to shorter nucleation induction time of crystal and higher crystallinity. Stronger van der Waals forces were observed in oleogels with higher polyunsaturated fatty acid contents especially for LO oleogel. Rheology also showed that LO oleogel with higher content of linolenic acid had higher crystallinity and lower crystal melting interfacial tension, resulting in the formation of a more stable network structure.
Collapse
Affiliation(s)
- Wanjun Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiuhang Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Phenolics Dynamics and Infrared Fingerprints during the Storage of Pumpkin Seed Oil and Thereof Oleogel. Processes (Basel) 2020. [DOI: 10.3390/pr8111412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cold-pressed pumpkin seed oil is a valuable source of bioactive molecules, including phenolic compounds. Oleogels are designed for trans and saturated fats substitution in foods, but also demonstrate protection and delivery of bioactive compounds. Consequently, the present work aimed to assess individual phenolic compounds dynamics and infrared fingerprints during the ambient storage of pumpkin seed oil and thereof oleogel. For oleogels production, a 5% ternary mixture of waxes, composed by 3% beewax, 1% sunflower wax and 1% rice bran wax, was used. Phenolic compounds were extracted by traditional liquid–liquid extraction, followed by HPLC-MS quantification. FTIR (400–4000 cm−1) was used for characterizing and monitoring the oxidative stability of all samples and for the evaluation of intermolecular forces between oleogelator mixtures and oil. Specific wavenumbers indicated oxidative processes in stored sample sets; storage time and sample clustering patterns were revealed by chemometrics. Isolariciresinol, vanillin, caffeic and syringic acids were quantified. The main changes were determined for isolariciresinol, which decreased in liquid pumpkin seed oil samples from 0.77 (T1) to 0.13 mg/100 g (T4), while for oleogel samples it decreased from 0.64 (T1) to 0.12 mg/100 g (T4). However, during the storage at room temperature, it was concluded that oleogelation technique might show potential protection of specific phenolic compounds such as syringic acid and vanillin after 8 months of storage. For isolariciresinol, higher amounts are registered in the oleogel (0.411 mg/100 g oil) than in the oil (0.37 mg/100 g oil) after 5 months of ambient temperature storage (T3). Oxidation processes occurred after 5 months storage for both oil and oleogel samples.
Collapse
|