1
|
Dowell JA, Bowsher AW, Jamshad A, Shah R, Burke JM, Donovan LA, Mason CM. Historic breeding practices contribute to germplasm divergence in leaf specialized metabolism and ecophysiology in cultivated sunflower (Helianthus annuus). AMERICAN JOURNAL OF BOTANY 2024; 111:e16420. [PMID: 39483110 DOI: 10.1002/ajb2.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/03/2024]
Abstract
PREMISE The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation. METHODS We analyzed 288 lines of cultivated H. annuus to examine the genomic basis of several specialized metabolites and agronomically important traits across major heterotic groups. RESULTS Heterotic group identity supports phenotypic divergences between fertility restoring and cytoplasmic male-sterility maintainer lines in leaf ecophysiology and specialized metabolism. However, the divergence is not associated with physical linkage to nuclear genes that support current hybrid breeding practices in cultivated H. annuus. Additionally, we identified four genomic regions associated with leaf ecophysiology and specialized metabolism that colocalize with previously identified QTLs for quantitative self-compatibility traits and with S-protein homolog (SPH) proteins, a recently discovered family of proteins associated with self-incompatibility and self/nonself recognition in Papaver rhoeas (common poppy) with suggested conserved downstream mechanisms among eudicots. CONCLUSIONS Further work is necessary to confirm the self-incompatibility mechanisms in cultivated H. annuus and their relationship to the integrative and polygenic architecture of leaf ecophysiology and specialized metabolism in cultivated sunflower. However, because self-compatibility is a derived quantitative trait in cultivated H. annuus, trait linkage to divergent phenotypic traits may have partially arisen as a potential unintended consequence of historical breeding practices and selection for yield.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70802, LA, USA
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Amna Jamshad
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Rahul Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- The Plant Center, University of Georgia, Athens, 30602, GA, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C. 9 V1V1V7, Canada
| |
Collapse
|
2
|
Revilla P, Alves ML, Andelković V, Balconi C, Dinis I, Mendes-Moreira P, Redaelli R, Ruiz de Galarreta JI, Vaz Patto MC, Žilić S, Malvar RA. Traditional Foods From Maize ( Zea mays L.) in Europe. Front Nutr 2022; 8:683399. [PMID: 35071287 PMCID: PMC8780548 DOI: 10.3389/fnut.2021.683399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.
Collapse
Affiliation(s)
- Pedro Revilla
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Violeta Andelković
- Department of Genebank, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Carlotta Balconi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Isabel Dinis
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Coimbra, Portugal
| | | | - Rita Redaelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Jose Ignacio Ruiz de Galarreta
- Department of Plant Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Vitoria, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sladana Žilić
- Department Food Technology and Biochemistry, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Rosa Ana Malvar
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
3
|
Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress. Int J Mol Sci 2022; 23:ijms23010569. [PMID: 35008994 PMCID: PMC8745624 DOI: 10.3390/ijms23010569] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Drought is the main abiotic stress that constrains sugarcane growth and production. To understand the molecular mechanisms that govern drought stress, we performed a comprehensive comparative analysis of physiological changes and transcriptome dynamics related to drought stress of highly drought-resistant (ROC22, cultivated genotype) and weakly drought-resistant (Badila, wild genotype) sugarcane, in a time-course experiment (0 h, 4 h, 8 h, 16 h and 32 h). Physiological examination reviewed that ROC22, which shows superior drought tolerance relative to Badila, has high performance photosynthesis and better anti-oxidation defenses under drought conditions. The time series dataset enabled the identification of important hubs and connections of gene expression networks. We identified 36,956 differentially expressed genes (DEGs) in response to drought stress. Of these, 15,871 DEGs were shared by the two genotypes, and 16,662 and 4423 DEGs were unique to ROC22 and Badila, respectively. Abscisic acid (ABA)-activated signaling pathway, response to water deprivation, response to salt stress and photosynthesis-related processes showed significant enrichment in the two genotypes under drought stress. At 4 h of drought stress, ROC22 had earlier stress signal transduction and specific up-regulation of the processes response to ABA, L-proline biosynthesis and MAPK signaling pathway–plant than Badila. WGCNA analysis used to compile a gene regulatory network for ROC22 and Badila leaves exposed to drought stress revealed important candidate genes, including several classical transcription factors: NAC87, JAMYB, bHLH84, NAC21/22, HOX24 and MYB102, which are related to some antioxidants and trehalose, and other genes. These results provide new insights and resources for future research and cultivation of drought-tolerant sugarcane varieties.
Collapse
|
4
|
Bento-Silva A, Duarte N, Belo M, Mecha E, Carbas B, Brites C, Vaz Patto MC, Bronze MR. Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules 2021; 11:biom11101396. [PMID: 34680029 PMCID: PMC8533067 DOI: 10.3390/biom11101396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
In Portugal, maize has been used for centuries to produce an ethnic bread called broa, employing traditional maize varieties, which are preferred by the consumers in detriment of commercial hybrids. In order to evaluate the maize volatiles that can influence consumers’ acceptance of broas, twelve broas were prepared from twelve maize varieties (eleven traditional and one commercial hybrid), following a traditional recipe. All maize flours and broas were analyzed by HS-SPME-GC-MS (headspace solid-phase microextraction) and broas were appraised by a consumer sensory panel. In addition, the major soluble phenolics and total carotenoids contents were quantitated in order to evaluate their influence as precursors or inhibitors of volatile compounds. Results showed that the major volatiles detected in maize flours and broas were aldehydes and alcohols, derived from lipid oxidation, and some ketones derived from carotenoids’ oxidation. Both lipid and carotenoids’ oxidation reactions appeared to be inhibited by soluble phenolics. In contrast, phenolic compounds appeared to increase browning reactions during bread making and, consequently, the production of pyranones. Traditional samples, especially those with higher contents in pyranones and lower contents in aldehydes, were preferred by the consumer sensory panel. These findings suggest that, without awareness, consumers prefer broas prepared from traditional maize flours with higher contents in health-promoting phenolic compounds, reinforcing the importance of preserving these valuable genetic resources.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Bruna Carbas
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Carla Brites
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
5
|
Medeiros DB, Brotman Y, Fernie AR. The utility of metabolomics as a tool to inform maize biology. PLANT COMMUNICATIONS 2021; 2:100187. [PMID: 34327322 PMCID: PMC8299083 DOI: 10.1016/j.xplc.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
With the rise of high-throughput omics tools and the importance of maize and its products as food and bioethanol, maize metabolism has been extensively explored. Modern maize is still rich in genetic and phenotypic variation, yielding a wide range of structurally and functionally diverse metabolites. The maize metabolome is also incredibly dynamic in terms of topology and subcellular compartmentalization. In this review, we examine a broad range of studies that cover recent developments in maize metabolism. Particular attention is given to current methodologies and to the use of metabolomics as a tool to define biosynthetic pathways and address biological questions. We also touch upon the use of metabolomics to understand maize natural variation and evolution, with a special focus on research that has used metabolite-based genome-wide association studies (mGWASs).
Collapse
Affiliation(s)
- David B. Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | |
Collapse
|