1
|
Liang Z, Zheng K, Xie G, Luo X, Li H. Sugar Utilization-Associated Food-Grade Selection Markers in Lactic Acid Bacteria and Yeast. Pol J Microbiol 2024; 73:3-10. [PMID: 38437472 PMCID: PMC10911659 DOI: 10.33073/pjm-2024-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review explores the development of food-grade selection markers in lactic acid bacteria and yeast; some of their strains are precisely defined as safe microorganisms and are crucial in the food industry. Lactic acid bacteria, known for their ability to ferment carbohydrates into lactic acid, provide essential nutrients and contribute to immune responses. With its strong fermentation capabilities and rich nutritional profile, yeast finds use in various food products. Genetic engineering in these microorganisms has grown rapidly, enabling the expression of enzymes and secondary products for food production. However, the focus is on ensuring safety, necessitating food-grade selection markers. Traditional antibiotic and heavy metal resistance selection markers pose environmental and health risks, prompting the search for safer alternatives. Complementary selection markers, such as sugar utilization markers, offer a promising solution. These markers use carbohydrates as carbon sources for growth and are associated with the natural metabolism of lactic acid bacteria and yeast. This review discusses the use of specific sugars, such as lactose, melibiose, sucrose, D-xylose, glucosamine, and N-acetylglucosamine, as selection markers, highlighting their advantages and limitations. In summary, this review underscores the importance of food-grade selection markers in genetic engineering and offers insights into their applications, benefits, and challenges, providing valuable information for researchers in the field of food microbiology and biotechnology.
Collapse
Affiliation(s)
- Zhiwen Liang
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Zheng
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guifeng Xie
- Guangzhou MEIZHONG Biotechnology Co., Ltd, Guangzhou, China
| | - Xiongsheng Luo
- Guangzhou MEIZHONG Biotechnology Co., Ltd, Guangzhou, China
| | - Huangjin Li
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Muñoz R, Rivas BDL, Rodríguez H, Esteban-Torres M, Reverón I, Santamaría L, Landete JM, Plaza-Vinuesa L, Sánchez-Arroyo A, Jiménez N, Curiel JA. Food phenolics and Lactiplantibacillus plantarum. Int J Food Microbiol 2024; 412:110555. [PMID: 38199014 DOI: 10.1016/j.ijfoodmicro.2023.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phenolic compounds are important constituents of plant food products. These compounds play a key role in food characteristics such as flavor, astringency and color. Lactic acid bacteria are naturally found in raw vegetables, being Lactiplantibacillus plantarum the most commonly used commercial starter for the fermentation of plant foods. Hence, the metabolism of phenolic compounds of L. plantarum has been a subject of study in recent decades. Such studies confirm that L. plantarum, in addition to presenting catalytic capacity to transform aromatic alcohols and phenolic glycosides, exhibits two main differentiated metabolic routes that allow the biotransformation of dietary hydroxybenzoic and hydroxycinnamic acid-derived compounds. These metabolic pathways lead to the production of new compounds with new biological and organoleptic properties. The described metabolic pathways involve the action of specialized esterases, decarboxylases and reductases that have been identified through genetic analysis and biochemically characterized. The purpose of this review is to provide a comprehensive and up-to-date summary of the current knowledge of the metabolism of food phenolics in L. plantarum.
Collapse
Affiliation(s)
- Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Héctor Rodríguez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - María Esteban-Torres
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Santamaría
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Maria Landete
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Ana Sánchez-Arroyo
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Natalia Jiménez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Antonio Curiel
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| |
Collapse
|
3
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023; 65:1306-1325. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Ruiz-Ramírez S, Jiménez-Flores R. Invited review: Properties of β-galactosidases derived from Lactobacillaceae species and their capacity for galacto-oligosaccharide production. J Dairy Sci 2023; 106:8193-8206. [PMID: 37678769 DOI: 10.3168/jds.2023-23392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023]
Abstract
β-galactosidase (enzymatic class 3.2.1.23) is one of the dairy industry's most important and widely used enzymes. The enzyme is part of a large family known to catalyze hydrolysis and transglycosylation reactions. Its hydrolytic activity is commonly used to decrease lactose content in dairy products, while its transglycosylase activity has recently been used to synthesize galacto-oligosaccharides (GOS). During the past couple of years, researchers have focused on studying β-galactosidase isolated and purified from lactic acid bacteria. This review will focus on β-galactosidase purified and characterized from what used to be the Lactobacillus genera. Furthermore, particular emphasis is given to its kinetics, biochemical characteristics, GOS production, market, and utilization by Lactobacilllaceae species.
Collapse
Affiliation(s)
- Silvette Ruiz-Ramírez
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
5
|
Production and Digestibility Studies of β-Galactosyl Xylitol Derivatives Using Heterogeneous Catalysts of LacA β-Galactosidase from Lactobacillus Plantarum WCFS1. Molecules 2022; 27:molecules27041235. [PMID: 35209024 PMCID: PMC8877486 DOI: 10.3390/molecules27041235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The synthesis of β-galactosyl xylitol derivatives using immobilized LacA β-galactosidase from Lactobacillus plantarum WCFS1 is presented. These compounds have the potential to replace traditional sugars by their properties as sweetener and taking the advantages of a low digestibility. The enzyme was immobilized on different supports, obtaining immobilized preparations with different activity and stability. The immobilization on agarose-IDA-Zn-CHO in the presence of galactose allowed for the conserving of 78% of the offered activity. This preparation was 3.8 times more stable than soluble. Since the enzyme has polyhistidine tags, this support allowed the immobilization, purification and stabilization in one step. The immobilized preparation was used in synthesis obtaining two main products and a total of around 68 g/L of β-galactosyl xylitol derivatives and improving the synthesis/hydrolysis ratio by around 30% compared to that of the soluble enzyme. The catalyst was recycled 10 times, preserving an activity higher than 50%. The in vitro intestinal digestibility of the main β-galactosyl xylitol derivatives was lower than that of lactose, being around 6 and 15% for the galacto-xylitol derivatives compared to 55% of lactose after 120 min of digestion. The optimal amount immobilized constitutes a very useful tool to synthetize β-galactosyl xylitol derivatives since it can be used as a catalyst with high yield and being recycled for at least 10 more cycles.
Collapse
|
6
|
Xu Z, Li C, Ye Y, Wang T, Zhang S, Liu X. The β-galactosidase LacLM plays the major role in lactose utilization of Lactiplantibacillus plantarum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Lyu J, Gao R, Guo Z. Galactosyldiacylglycerols: From a Photosynthesis-Associated Apparatus to Structure-Defined In Vitro Assembling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8910-8928. [PMID: 33793221 DOI: 10.1021/acs.jafc.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Being ubiquitously present in plants, microalgae, and cyanobacteria and as the major constituents of thylakoid membranes, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) make up approximately 52 and 26%, respectively, of chloroplast lipids. Thylakoid membranes harbor the photosynthetic complexes and numerous essential biochemical pathways where MGDG and DGDG play a central role in facilitating photosynthesis light reaction, maintaining chloroplast morphology, and responding to abiotic stresses. Furthermore, these galactolipids are also bioactive compounds with antitumor, antimicrobial, antiviral, immunosuppressive, and anti-inflammatory activities and important nutritional value. These characteristics are strictly dependent upon their fatty acyl chain length, olefinic nature, and stereoconfiguration. However, their application potentials are practically untapped, largely as a result of the fact that their availability in large quantity and high purity (structured galactolipids) is challenging. In addition to laborious extraction from natural sources, in vitro assembling of these molecules could be a promising alternative. Thus, this review updates the latest advances in elucidating biosynthesis paths of MGDG and DGDG and related enzyme systems, which present invaluable inspiration to design approaches for a retrosynthesis of galactolipids. More critically, this work summarizes recent developments in the biological and enzymatic syntheses of galactolipids, especially the strategic scenarios for the construction of in vitro enzymatic and/or chemoenzymatic synthesis routes. Protein engineering of enzymes involved in the synthesis of MGDG and DGDG to improve their properties is highlighted, and the applications of galactolipids in foods and medicine are also discussed.
Collapse
Affiliation(s)
- Jiabao Lyu
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zheng Guo
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Kim SY, Kim SA, Jang YJ, Seo SO, Han NS. Screening of endogenous strong promoters of Leuconostoc citreum EFEL2700 based on transcriptome analysis and its application for food-grade production of β-galactosidase. J Biotechnol 2020; 325:1-6. [PMID: 33278464 DOI: 10.1016/j.jbiotec.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Leuconostoc citreum is a heterofermentative lactic acid bacterium frequently found in the various fermented foods. L. citreum EFEL2700 isolated from Korean kimchi has been used as a host strain for biotechnological applications. For the use as a food-grade host to over-produce food ingredients or enzymes, strong endogenous promoters guarantying high expression levels of target genes are necessary. In this study, transcriptomic analysis of L. citreum EFEL2700 was performed using RNA-Seq and three promoters of the most highly expressed genes were selected: glyceraldehyde 3-phosphate dehydrogenase (G3PD), 6-phosphogluconate dehydrogenase (6PGD), and phosphoketolase (PPK). Thereafter, they were used as promoters to express β-galactosidase gene from Lactobacillus plantarum WCFS1 in L. citreum EFEL2700 and the levels were compared with the control promoter P710 from L. mesenteroides ATCC 8293. As results, the β-galactosidase activities of the transformants were 2.73, 0.27, 37.43, and 9.25 units/mg under the P710, G3PD, 6PGD, and PPK promoters, respectively. The expression level of endogenous promoter 6PGD was superior to the heterologous P710 promoter previously used in a Leuconostoc-Escherichia coli shuttle vector. The 6PGD developed in this study can be used as the most suitable promoter for β-galactosidase expression in L. citreum EFEL2700.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ye-Ji Jang
- Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|