1
|
Gong X, Li Y, Liu L, Fu J, He Z, Li L, Tian W. Ferulic acid concentration in 233 maize inbreds and its processing stability in selected high-ferulic-acid lines. Food Chem 2025; 484:144333. [PMID: 40250218 DOI: 10.1016/j.foodchem.2025.144333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Unlike wheat and rice, which are typically consumed as refined grains, maize is typically consumed in whole-grain forms, making it an ideal source of whole-grain phytochemicals. This study explored the genetic diversity and processing stability of ferulic acid concentration (FAC) in 233 diverse maize inbred lines. Substantial variation in FAC was observed, ranging from 1174.7 to 4811.0 μg/g. Selected high-FAC lines demonstrated consistent FAC across five environments. FAC was not significantly correlated with kernel weight, suggesting the feasibility of producing high-FAC maize without compromising yield. More importantly, common food-processing methods such as boiling, porridge-making, and popcorn-making had minimal impact on FAC, even with slight increases observed in popcorn. These findings highlight the potential of whole grain maize as a source of natural antioxidants and lay the groundwork for developing nutritionally enhanced maize for functional food applications.
Collapse
Affiliation(s)
- Xue Gong
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuan Li
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Li Liu
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Cereal Quality Testing Center/ Laboratory of Quality Evaluation and Nutrition Health of Agro-products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jindong Fu
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Cereal Quality Testing Center/ Laboratory of Quality Evaluation and Nutrition Health of Agro-products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Wenfei Tian
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
González-Rodríguez T, García-Lara S. Maize hydroxycinnamic acids: unveiling their role in stress resilience and human health. Front Nutr 2024; 11:1322904. [PMID: 38371498 PMCID: PMC10870235 DOI: 10.3389/fnut.2024.1322904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Maize production is pivotal in ensuring food security, particularly in developing countries. However, the crop encounters multiple challenges stemming from climatic changes that adversely affect its yield, including biotic and abiotic stresses during production and storage. A promising strategy for enhancing maize resilience to these challenges involves modulating its hydroxycinnamic acid amides (HCAAs) content. HCAAs are secondary metabolites present in plants that are essential in developmental processes, substantially contributing to defense mechanisms against environmental stressors, pests, and pathogens, and exhibiting beneficial effects on human health. This mini-review aims to provide a comprehensive overview of HCAAs in maize, including their biosynthesis, functions, distribution, and health potential applications.
Collapse
Affiliation(s)
| | - Silverio García-Lara
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| |
Collapse
|
3
|
Comparative Analysis of Multiple GWAS Results Identifies Metabolic Pathways Associated with Resistance to A. flavus Infection and Aflatoxin Accumulation in Maize. Toxins (Basel) 2022; 14:toxins14110738. [PMID: 36355988 PMCID: PMC9695789 DOI: 10.3390/toxins14110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 01/26/2023] Open
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by several species of Aspergillus, including Aspergillus flavus, an important ear rot pathogen in maize. Most commercial corn hybrids are susceptible to infection by A. flavus, and aflatoxin contaminated grain causes economic damage to farmers. The creation of inbred lines resistant to Aspergillus fungal infection or the accumulation of aflatoxins would be aided by knowing the pertinent alleles and metabolites associated with resistance in corn lines. Multiple Quantitative Trait Loci (QTL) and association mapping studies have uncovered several dozen potential genes, but each with a small effect on resistance. Metabolic pathway analysis, using the Pathway Association Study Tool (PAST), was performed on aflatoxin accumulation resistance using data from four Genome-wide Association Studies (GWAS). The present research compares the outputs of these pathway analyses and seeks common metabolic mechanisms underlying each. Genes, pathways, metabolites, and mechanisms highlighted here can contribute to improving phenotypic selection of resistant lines via measurement of more specific and highly heritable resistance-related traits and genetic gain via marker assisted or genomic selection with multiple SNPs linked to resistance-related pathways.
Collapse
|
4
|
Liu S, Jiang J, Ma Z, Xiao M, Yang L, Tian B, Yu Y, Bi C, Fang A, Yang Y. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:922119. [PMID: 35812905 PMCID: PMC9257175 DOI: 10.3389/fpls.2022.922119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an important class of metabolites in plants. Extensive studies have reported that a variety of plant hydroxycinnamamides exhibit pivotal roles in plant-pathogen interactions, such as p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the mechanism of HCAAs involved in plant immune responses (such as reactive oxygen species (ROS), cell wall response, plant defense hormones, and stomatal immunity). However, these advances have also revealed the complexity of HCAAs participation in plant defense reactions, and many mysteries remain to be revealed. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future exploration of phytochemical defense metabolites.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jincheng Jiang
- Committee on Agriculture and Rural Affairs of Yongchuan District, Chongqing, China
| | - Zihui Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lan Yang
- Analytical and Testing Center, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Liu S, Xie L, Su J, Tian B, Fang A, Yu Y, Bi C, Yang Y. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Puccinia striiformis f. sp. tritici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3719-3729. [PMID: 35293725 DOI: 10.1021/acs.jafc.2c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust is a widespread and harmful wheat disease caused by Puccinia striiformis f. sp. tritici (Pst) worldwide. Targeted metabolome and transcriptomics analyses of CYR23 infected leaves were performed to identify the differential metabolites and differentially expressed genes related to wheat disease resistance. We observed upregulation of 33 metabolites involved in the primary and secondary metabolism, especially for homogentisic acid (HGA), p-coumaroylagmatine, and saccharopine. These three metabolites were mainly involved in the phenylpropanoid metabolic pathway, hydroxycinnamic acid amides pathway, and saccharopine pathway. Combined with transcriptome data on non-compatible interaction, the synthesis-related genes of these three differential metabolites were all upregulated significantly. The gene regulatory network involved in response to Pst infection was constructed, which revealed that several transcription factor families including WRKYs, MYBs, and bZIPs were identified as potentially hubs in wheat resistance response against Pst. An in vitro test showed that HGA effectively inhibited the germination of stripe rust fungus urediniospores and reduced the occurrence of wheat stripe rust. The results of gene silencing and overexpression of HGA synthesis-related gene 4-hydroxyphenylpyruvate dioxygenase proved that HGA was involved in wheat disease resistance. These results provided a further understanding of the disease resistance of wheat and indicated that HGA can be developed as a potential agent against Pst.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liyang Xie
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jiaxuan Su
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Serra AT, Vaz Patto MC, Bronze MR. Broa, an Ethnic Maize Bread, as a Source of Phenolic Compounds. Antioxidants (Basel) 2021; 10:672. [PMID: 33925894 PMCID: PMC8145897 DOI: 10.3390/antiox10050672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022] Open
Abstract
Maize is an important source of phenolic compounds, specially hydroxycinnamic acids, which are widely known for their antioxidant activity and associated health benefits. However, these effects depend on their bioaccessibility, which is influenced by the different techniques used for food processing. Several traditional products can be obtained from maize and, in Portugal, it is used for the production of an ethnic bread called broa. In order to evaluate the effect of processing on maize phenolic composition, one commercial hybrid and five open-pollinated maize flours and broas were studied. The total phenolic content and antioxidant activity were evaluated by the Folin-Ciocalteu and ORAC assays, respectively. The major phenolics, namely ferulic and p-coumaric acids (in their soluble-free, soluble-conjugated and insoluble forms), insoluble ferulic acid dimers and soluble hydroxycinnamic acid amides were quantitated. Results show that the total phenolic content, antioxidant activity and hydroxycinnamic acids resisted traditional processing conditions used in the production of broas. The content in soluble-free phenolics increased after processing, meaning that their bioaccessibility improved. Portuguese traditional broas, produced with open-pollinated maize varieties, can be considered an interesting dietary source of antioxidant compounds due to the higher content in hydroxycinnamic acids and derivatives.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| |
Collapse
|