1
|
Zhang Y, Lv X, Wang D, Zheng C, Chen H, Yuan Y, Wei F. Metabolomics combined with biochemical analyses revealed phenolic profiles and antioxidant properties of rapeseeds. Food Chem 2025; 466:142250. [PMID: 39615359 DOI: 10.1016/j.foodchem.2024.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Phenolic compounds, one of the most crucial lipid concomitants in rapeseed, have garnered heighten attention due to their numerous health benefits. Therefore, efficiently characterizing the phenolic profile of rapeseed is paramount for discerning their potential bioactivities. This study employed untargeted metabolomics in conjunction with molecular networking to trace the phenolic composition across three rapeseed genotypes. A total of 117 phenolic compounds were identified in rapeseed by mass spectrometry under positive and negative ionization modes, including 36 flavonoids, 23 coumarins, 12 phenolic acids, 10 lignans, 4 stilbenes, 4 diarylheptanes, 1 tannin, and several other phenolic constituents. Biochemical analyses revealed that Brassica napus rapeseed typically exhibited the highest total phenolic content and total flavonoid content as well as the strongest antioxidant capacity among three rapeseed genotypes. Through correlation analysis, 17 potential antioxidant phenolic compounds were tentatively screened from rapeseed, supporting the development and utilization of natural antioxidants from rapeseed.
Collapse
Affiliation(s)
- Yao Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yongjun Yuan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Zhu T, Kuai Y, Guo X, Bu G, Yang C, Chen F. Effect of Dietary Oils with Different Fatty Acid Compositions on Serum Lipid and Gut Microbiota of Rats. Foods 2024; 14:61. [PMID: 39796351 PMCID: PMC11720656 DOI: 10.3390/foods14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of SD rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota. It was found that these differences in fatty acid composition had no significant effect on body fat and liver tissue. However, after digestion, the rapeseed oil group showed lowest triglyceride content (1.22 ± 0.15) and a lower LDL/HDL ratio (0.41 ± 0.02). For gut microbiota distribution, the linseed oil group showed a higher Firmicutes/Bacteroides ratio (6.11 ± 0.54) and a high proportion of Lactobacillus. These data indicate that both the unsaturated fatty acid content and n-3 unsaturated fatty acids collectively had an effect on digestion metabolism, and the influence order may be n-3 unsaturated fatty acids > unsaturated fatty acid content.
Collapse
Affiliation(s)
| | | | | | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.Z.); (Y.K.); (X.G.); (G.B.); (C.Y.)
| |
Collapse
|
3
|
Wang D, Li D, Xu Q, Lv X, Chen H, Wei F. Steam explosion pretreatment enhances free/combined phytosterol extraction and utilization in rapeseed ( Brassica napus L.) and its processed products: Insights from SPE-GC approach. Curr Res Food Sci 2024; 9:100869. [PMID: 39398977 PMCID: PMC11470560 DOI: 10.1016/j.crfs.2024.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
The study investigates the impact of steam explosion pretreatment on the distribution of free and combined phytosterols within rapeseed and its derived products. Utilizing solid phase extraction-gas chromatography (SPE-GC) analysis, we elucidated the composition and distribution of phytosterols in five rapeseed varieties and their corresponding processed oils and cakes. The results indicated that Zhongyou 516 and Xiwang 988 are richer in combined phytosterols, whereas Dadi 199, Zhongyouza 501, and Xiwang 291 have a greater concentration of free phytosterols. Steam explosion pretreatment significantly increased the extraction proportion of combined phytosterols in rapeseeds. Throughout the oil process, more than half of the total phytosterol content, specifically 57.0%, was transferred from the steam explosion-treated rapeseed into the rapeseed oil. The variety Xiwang 291 showed the highest efficiency in this transfer, achieving a rate of 61.7%. The study provides crucial data for the enhancement of rapeseed processing techniques and the efficient utilization of phytosterols. Moreover, the study highlights the potential use of the ratio of free to combined phytosterols as a discriminator for different rapeseed oil varieties, offering valuable insights for quality assurance and product differentiation in the industry.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Dong Li
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Qiuhui Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
4
|
Zhang JJ, Xu X, Zeng Q, Li C, Xi BN, Shu Y, Ma T, Dong H, Shen Y. Lipidomics and metabolomics reveal the molecular mechanisms underlying the effect of thermal treatment on composition and oxidative stability of walnut oil. Food Res Int 2024; 191:114695. [PMID: 39059908 DOI: 10.1016/j.foodres.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Roasting walnut kernel significantly improves the oxidative stability and sensory properties of its oil. However, the effect of roasting temperatures on the molecular change of main components and micronutrients in walnut oil is still unclear. Herein, lipidomics and metabolomics were integrated to comprehensively profile the walnut oil obtained at different roasting temperatures (30 °C, 120 °C, 140 °C, 160 °C, and 180 °C). Lipidomics showed that the content of glycerolipids, sphingolipids, and glycerophospholipids decreased with roasting temperatures, while the oxidized fatty acids and triglycerides increased. Ratios of linoleic acid and linolenic acid varied with roasting temperatures and were most close to 4-6:1 at 140 °C, 160 °C, and 180 °C. Major classes of micronutrients showed a tendency to increase at the roasting temperature of 120 °C and 140 °C, then decrease at 160 °C and 180 °C. Liposoluble amino acids identified for the first time in walnut oil varied with roasting temperatures. Correlation analysis demonstrated that the higher contents of liposoluble amino acids and phenolics are positively associated with enhanced oxidative stability of walnut oil obtained at 140 °C. Furthermore, glutamine and 5-oxo-D-proline were expected to be potential biomarkers to differentiate the fresh and roasted walnut oil. The study is expected to provide new insight into the change mechanism of both major lipids and micronutrients in walnut oil during the roasting process.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Qin Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Bo-Nan Xi
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yu Shu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hengtao Dong
- Shimadzu (China) Co., Ltd., Xi'an, Shaanxi 710000, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China; Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
5
|
Peng S, Liao L, Deng H, Liu X, Lin Q, Wu W. Alleviating Effect of Lipid Phytochemicals in Seed Oil ( Brassica napus L.) on Oxidative Stress Injury Induced by H 2O 2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway. Nutrients 2024; 16:2820. [PMID: 39275137 PMCID: PMC11396941 DOI: 10.3390/nu16172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
α-tocopherol (α-T), β-sitosterol (β-S), canolol (CA), and sinapic acid (SA) are the four main endogenous lipid phytochemicals (LP) found in Brassica napus L. seed oil, which possess the bioactivity to prevent the risk of several chronic diseases via antioxidant-associated mechanisms. Discovering the enhancer effects or synergies between LP is valuable for resisting oxidative stress and improving health benefits. The objectives of this study were to identify a potentially efficacious LP combination by central composite design (CCD) and cellular antioxidant activity (CAA) and to investigate its protective effect and potential mechanisms against H2O2-induced oxidative damage in HepG2 cells. Our results indicated that the optimal concentration of LP combination was α-T 10 μM, β-S 20 μM, SA 125 μM, and CA 125 μM, respectively, and its CAA value at the optimal condition was 10.782 μmol QE/100 g. At this concentration, LP combination exerted a greater amelioration effect on H2O2-induced HepG2 cell injury than either antioxidant (tea polyphenols or magnolol) alone. LP combination could reduce the cell apoptosis rate induced by H2O2, lowered to 10.06%, and could alleviate the degree of oxidative damage to cells (ROS↓), lipids (MDA↓), proteins (PC↓), and DNA (8-OHdG↓). Additionally, LP combination enhanced the antioxidant enzyme activities (SOD, CAT, GPX, and HO-1), as well as the T-AOC, and increased the GSH level in HepG2 cells. Furthermore, LP combination markedly upregulated the expression of Nrf2 and its associated antioxidant proteins. It also increased the expression levels of Nrf2 downstream antioxidant target gene (HO-1, SOD-1, MnSOD, CAT, GPX-1, and GPX-4) and downregulated the mRNA expression levels of Keap1. The oxidative-stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by LP treatment. These results indicate that LP combination protected HepG2 cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE signaling pathways.
Collapse
Affiliation(s)
- Simin Peng
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China;
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Huiqing Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China;
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.L.)
| |
Collapse
|
6
|
Liu H, Zhang R, Wang W, Xia X, Xu Z, Xiang X. Inhibitory effects and mechanisms of phenolic compounds in rapeseed oil on advanced glycation end product formation in chemical and cellular models in vitro. Food Chem 2024; 447:139056. [PMID: 38513495 DOI: 10.1016/j.foodchem.2024.139056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zhenxia Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
7
|
Liu H, Zheng C, Li Z, Xia X, Jiang D, Wang W, Zhang R, Xiang X. Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: Spectroscopy, molecular docking, and molecular dynamic simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122251. [PMID: 36542921 DOI: 10.1016/j.saa.2022.122251] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Developing naturally active components to control α-amylase/α-glucosidase activity is highly desired for preventing and managing type 2 diabetes. Rapeseed oil is rich in active phenolic compounds and seed oil is a major source of liposoluble inhibitors to these enzymes. However, it remains unclear about the interaction of phenolic compounds in rapeseed oil with α-amylase/α-glucosidase. This study found that the important phenolic compounds from rapeseed oil (Sinapic acid, SA; canolol, CAO; canolol dimer, CAO dimer) possessed effective inhibition performance against α-amylase and α-glucosidase. CAO showed the lowest and highest inhibitory effect, respectively. In the kinetics studies, the inhibition mechanism of SA/CAO/CAO dimer against α-glucosidase was non-competitive, exhibiting a different way from α-amylase. Fluorescence quenching spectra implied that the static processes were responsible for the spontaneous binding between the compounds and enzymes. Fourier-transform infrared spectroscopy (FT-IR) displayed these compounds-induced conformation alterations of α-amylase/α-glucosidase. Molecular docking revealed that SA/CAO/CAO dimer decreased the catalytic efficiency of α-amylase/α-glucosidase through hydrogen bonds, hydrophobic force, or π-π interaction. Molecular dynamics matched well with the experimental and docking results regarding the inhibitory behaviors and interactions toward α-amylase/α-glucosidase. These results demonstrated the potential benefits of phenolic compounds from rapeseed oil in antidiabetic-related activities.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ziliang Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Dan Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Wen Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
8
|
Optimization of Canolol Production from Canola Meal Using Microwave Digestion as a Pre-Treatment Method. Foods 2023; 12:foods12020318. [PMID: 36673413 PMCID: PMC9857780 DOI: 10.3390/foods12020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Canola meal, the by-product of canola oil refining, is a rich source of phenolic compounds and protein. The meal, however, is primarily utilized as animal feed but represents an invaluable source of nutraceuticals. Of particular interest are the sinapates, sinapine and sinapic acid, with the decarboxylation of the latter to form canolol. Extracting these phenolics has been carried out using a variety of different methods, although there is an urgent need for environmentally safe and sustainable methods. Microwave-assisted solvent extraction (MAE), as a green extraction method, is receiving considerable interest. Its ease of use makes MAE one of the best methods for studying multiple solvents. The formation of canolol, from sinapine and sinapic acid, is primarily dependent on temperature, which favors the decarboxylation reaction. The application of MAE, using the MultiwaveTM 500 microwave system with green extractants, was undertaken to assess its ability to enhance the yield of sinapates and canolol. This study examined the effects of different pre-treatment temperature-time combinations of 140, 150, 160, and 170 °C for 5, 10, 15, 20, and 30 min on the extraction of canolol and other canola endogenous phenolic compounds. Total phenolic content (TPC), total flavonoid content (TFC), as well as metal ion chelation (MIC) and DPPH radical activity of the different extracts were assessed. The results confirmed that extractability of canolol was optimized with methanol at 151 °C and with ethanol at 170 °C with pre-treatment times of 15.43 min and 19.31 min, respectively. Furthermore, there was a strong positive correlation between TPC and TFC (p < 0.05) and a negative correlation between TFC and DPPH radical activity. Interestingly, no significant correlation was observed between MIC and DPPH. These results confirmed the effectiveness of MAE, using the novel MultiwaveTM 500 microwave instrument, to enhance the yield of canolol. This was accompanied by substantial improvements in the antioxidant activity of the different extracts and further established the efficacy of the current MAE method for isolating important natural phenolic derivatives for utilization by the nutraceutical industry.
Collapse
|
9
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
10
|
Tan M, Zhang HB, Ye PP, Cui FJ, Chen C, Zhou TL, Shi JC, Zhang W, Shu XQ, Chen ZW. Distinguishing strong, mellow and light fragrant rapeseed oils in China using physicochemical, nutritional and aroma profiles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Wang Y, He Y, Wang J, Liu C, Li L, Tan X, Tan B. An endeavor of "deep-underground agriculture": storage in a gold mine impacts the germination of canola (Brassica napus L.) seeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46357-46370. [PMID: 35169945 DOI: 10.1007/s11356-022-19125-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Exploring and utilizing the agronomic potential of deep-underground is one of the ways to cope with the challenges of sudden environmental change on agriculture. Understanding the effects of environmental stresses on the morphological and physiological indicators of crop seeds after their storage deep-underground is crucial to developing and implementing strategies for agriculture in the deep-underground space. In this study, we stored canola seeds in tunnels with horizontal depths of 0, 240, 690, and 1410 m in a gold mine. Seeds in envelopes were retrieved at 42, 66, 90, and 227 days of storage, whereas seeds in sealed packages were retrieved at 66 and 227 days of storage. The germination tests were conducted to investigate the effects of storage depth, duration, and packing method on stored and non-stored seeds. Results showed that increased depth and duration reduced seed germination rate, with the germination and vigor indexes also descending to varying degrees. Increased hypocotyl length and biomass accumulation suggested that deep-underground environment had a more significant compensatory effect on seed germination. For all indicators, the performance of seeds sealed in packages was superior to those stored in envelopes. Regression analysis showed that it was difficult to obtain the optimal value of each indicator simultaneously. The successful germination experiment foreshadowed the possibilities of deep-underground agriculture in the future.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yuxin He
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China.
| | - Jingchen Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Tan M, Chen C, Fu X, Cui FJ, Zhang HB, Ye PP, Zhang W, Shu XQ, Shi JC, Chen ZW. Roasting Treatments Affect Physicochemical, Aroma and Nutritional Quality of Strong Fragrant Rapeseed Oil. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
He M, Nian B, Shi J, Sun X, Du R, Tan CP, Xu YJ, Liu Y. Influence of extraction technology on rapeseed oil functional quality: a study on rapeseed polyphenols. Food Funct 2022; 13:270-279. [PMID: 34888592 DOI: 10.1039/d1fo01507a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 μg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Binbin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Runfeng Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Malaysia
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
14
|
Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Zhang Y, Li X, Lu X, Sun H, Wang F. Effect of oilseed roasting on the quality, flavor and safety of oil: A comprehensive review. Food Res Int 2021; 150:110791. [PMID: 34865806 DOI: 10.1016/j.foodres.2021.110791] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Roasting is widely applied in oil processing and employs high temperatures (90-260 °C) to heat oilseeds evenly. Roasting improves the extraction yield of oil by the generation of pores in the oilseed cell walls, which facilitates the movement of oil from oilseed during subsequent extraction. It also affects the nutritional value and palatability of the prepared oil, which has attracted consumers' attention. An appropriate roasting process contributes to better extraction of bioactive compounds, particularly increasing the total polyphenol content in the oil. Correspondingly, extracted oil exhibits higher antioxidant capacity and oxidative stability after roasting the oilseeds due to better extraction of endogenous antioxidants and the generation of Maillard reaction products. Furthermore, roasting process is critical for the formation of aroma-active volatiles and the improvement of desired sensory characteristics, so it is indispensable for the production of fragrant oil. However, some harmful components are inevitably generated during roasting, including oxidation products, polycyclic aromatic hydrocarbons, and acrylamide. Monitoring and controlling the concentrations of harmful compounds in the oil during the roasting process is important. Therefore, this review updates how roasting affect the quality and safety of oils and provides useful insight into regulation of the roasting process based on bioactive compounds, sensory characteristics, and safety of oils. Further research is required to assess the nutritional value and safety of roasted oils in vivo and to develop a customized roasting process for various oilseeds to produce good-quality oils.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xiaolong Li
- COFCO Nutrition & Health Research Institute, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing 102209, PR China
| | - Xinzhu Lu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Hao Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|