1
|
Zhang K, Gao M, Cao C, Zhang M, Ahmad W, Rady A, Aldahmash B, Zhu T, Khan SS, Liu L. Intensification of 2'-Fucosyllactose biosynthesis pathway by using a novel fucosyltransferase from Bacillus cereus. Front Bioeng Biotechnol 2025; 13:1569597. [PMID: 40370597 PMCID: PMC12075129 DOI: 10.3389/fbioe.2025.1569597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction 2'-Fucosyllactose (2'-FL) is an oligosaccharide that can be synthesized in the human body and is known for its health-promoting and prebiotic effects. The biosynthesis of 2'-FL using microorganisms has received attention recently due to its increased application in nutritional and medical infant formulations. Methods This work attempts the new application of Bacillus cereus α-1,2-fucosyltransferase (FutCB) in the de novo synthesis of 2'-FL in Escherichia coli (E. coli). Additionally, knocking out the LacZ and WaaF genes alongside overexpression of the key gmd, manB, wcaG, and manC genes enhances the availability of the necessary precursors GDP-L-fucose and lactose for the synthesis of 2'-FL. Results and discussion The use of constitutive promoters achieved better control over the production of 2'-FL during fed-batch fermentation. After 64 h of fermentation, the modified E. coli strains produced 121.4 g/L 2'-FL with a yield of 1.90 g/L/h, resulting in an impressive 2'-FL output. These results together indicate the potential of large-scale, high-yield production of 2'-FL and form a basis of much more refinement to be done. The next step will focus on maximum substrate utilization, alteration of gene regulation, and improvement of commercial-scale synthesis.
Collapse
Affiliation(s)
- Kainuo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Miaomiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chenqi Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengxin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tianze Zhu
- Beijing Zeno Biotechnology Development Co. Ltd., Beijing, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
2
|
Fang H, Gao J, Yu L, Shi P, Zhao C. Engineering Pichia pastoris for Efficient De Novo Synthesis of 2'-Fucosyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8555-8566. [PMID: 40152696 DOI: 10.1021/acs.jafc.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant in human milk oligosaccharides (HMOs), is a nutrient of great importance. As a safe organism widely used in industries, Pichia pastoris was tested here for 2'-FL production. The de novo biosynthesis pathway of 2'-FL was constructed using genome-editing technology based on CRISPR-Cas9 with an initial titer of 1.01 g/L. Introducing N-terminal SUMO or Ub tag to FucT2 and the transporter CDT2 from Neurospora crassa into P. pastoris was found to improve 2'-FL production. Then, modular metabolic engineering was conducted to improve 2'-FL production, enhancing the GTP supply module, NADPH regeneration module, and precursor supply module. Subsequently, the key enzyme FucT2 was semirationally designed to further increase 2'-FL production. Finally, the 2'-FL production by engineered P. pastoris was scaled up to the 3 L fermenter in fed-batch mode, resulting in a titer of 22.35 g/L that is the highest by P. pastoris. The results prove the effectiveness of the metabolic engineering strategies and demonstrate that P. pastoris could be a potential chassis to produce HMOs.
Collapse
Affiliation(s)
- Hao Fang
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou 450016, Henan Province, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Jialun Gao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Peng Shi
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Park BS, Yoon J, Lee JM, Cho SH, Choi Y, Cho BK, Oh MK. Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production. Microb Cell Fact 2025; 24:2. [PMID: 39754105 PMCID: PMC11699682 DOI: 10.1186/s12934-024-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production. RESULTS The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium. CONCLUSIONS The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.
Collapse
Affiliation(s)
- Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jihee Yoon
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoojeong Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.
| |
Collapse
|
4
|
Liu W, Deng Y, Li Y, Yang L, Zhu L, Jiang L. Coupling protein scaffold and biosilicification: A sustainable and recyclable approach for d-mannitol production via one-step purification and immobilization of multienzymes. Int J Biol Macromol 2024; 269:132196. [PMID: 38723818 DOI: 10.1016/j.ijbiomac.2024.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yuanping Deng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ying Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Li Yang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
5
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Construction of an engineered Escherichia coli for effective synthesis of 2'-fucosyllactose via the salvage pathway. Synth Syst Biotechnol 2024; 9:108-114. [PMID: 38292762 PMCID: PMC10825923 DOI: 10.1016/j.synbio.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
2'-Fucosyllactose (2'-FL) is one of the important functional oligosaccharides in breast milk. So far, few attempts on biosynthesis of 2'-FL by the salvage pathway have been reported. Herein, the salvage pathway enzyme genes were introduced into the E. coli BL21star(DE3) for synthesis of 2'-FL. The 2'-FL titer increased from 1.56 to 2.13 g/L by deleting several endogenous genes on competitive pathways. The α-1,2-fucosyltransferase (WbgL) was selected, and improved the 2'-FL titer to 2.88 g/L. Additionally, the expression level of pathway enzyme genes was tuned through optimizing the plasmid copy number. Furthermore, the spatial distribution of WbgL was enhanced by fusing with the MinD C-tag. After optimizing the fermentation conditions, the 2'-FL titer reached to 7.13 g/L. The final strain produced 59.22 g/L of 2'-FL with 95% molar conversion rate of lactose and 92% molar conversion rate of fucose in a 5 L fermenter. These findings will contribute to construct a highly efficient microbial cell factory to produce 2'-FL or other HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| | - Zi He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| |
Collapse
|
7
|
Li Y, Chen Q, Liu S, Deng L, Li S, Gao R. Efficient One-Pot Synthesis of Uridine Diphosphate Galactose Employing a Trienzyme System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3644-3653. [PMID: 38335068 DOI: 10.1021/acs.jafc.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The limited availability of high-cost nucleotide sugars is a significant constraint on the application of their downstream products (glycosides and prebiotics) in the food or pharmaceutical industry. To better solve the problem, this study presented a one-pot approach for the biosynthesis of UDP-Gal using a thermophilic multienzyme system consisting of GalK, UGPase, and PPase. Under optimal conditions, a 2 h reaction resulted in a UTP conversion rate of 87.4%. In a fed-batch reaction with Gal/ATP = 20 mM:10 mM, UDP-Gal accumulated to 33.76 mM with a space-time yield (STY) of 6.36 g/L·h-1 after the second feeding. In repetitive batch synthesis, the average yield of UDP-Gal over 8 cycles reached 10.80 g/L with a very low biocatalyst loading of 0.002 genzymes/gproduct. Interestingly, Galk (Tth0595) could synthesize Gal-1P using ADP as a donor of phosphate groups, which had never been reported before. This approach possessed the benefits of high synthesis efficiency, low cost, and superior reaction system stability, and it provided new insights into the rapid one-pot synthesis of UDP-Gal and high-value glycosidic compounds.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Siyao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Lin Deng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Shichao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Li M, Zhang T, Li C, Gao W, Liu Z, Miao M. Semi-rationally designed site-saturation mutation of Helicobacter pylori α-1,2-fucosyltransferase for improved catalytic activity and thermostability. Int J Biol Macromol 2024; 259:129316. [PMID: 38218286 DOI: 10.1016/j.ijbiomac.2024.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
You R, Wang L, Hu M, Tao Y. Efficient production of 2'-fucosyllactose from fructose through metabolically engineered recombinant Escherichia coli. Microb Cell Fact 2024; 23:38. [PMID: 38303005 PMCID: PMC10835893 DOI: 10.1186/s12934-024-02312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.
Collapse
Affiliation(s)
- Ran You
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| |
Collapse
|
10
|
Qian D, Zhang C, Deng C, Zhou M, Fan L, Zhao L. De novo biosynthesis of 2'-fucosyllactose in engineered Pichia pastoris. Biotechnol Lett 2023; 45:521-536. [PMID: 36790735 DOI: 10.1007/s10529-023-03357-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Pichia pastoris is well known for its ability to produce short and low-immunogenic humanized glycosyl chains onto recombinant glycoproteins, it was thus speculated to be applicable to synthesize oligosaccharides. In this study, generally recognized as safe (GRAS) microorganism Pichia pastoris GS115 was tested for its potential to be used as a new synthetic chassis to produce the most abundant human milk oligosaccharide 2'-fucosyllactose (2'-FL). METHODS To enable the de novo synthesis of 2'-FL, lactose transporter lac12, two enzymes of gmd, gmer, and fucosyltransferases futC were integrated into the genome of P. pastoris, under the control of constitutive PGAP promoter. RESULTS The resulting recombinant yeasts yielded up to 0.276 g/L through culture optimization in a 5 L bioreactor. CONCLUSION To our knowledge, this is the first report of 2'-FL production in engineered Pichia pastoris. This work is a good starting point to produce 2'-FL using Pichia pastoris as a viable chassis.
Collapse
Affiliation(s)
- Difan Qian
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
11
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
12
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
13
|
Microbial Production of Human Milk Oligosaccharides. Molecules 2023; 28:molecules28031491. [PMID: 36771155 PMCID: PMC9921495 DOI: 10.3390/molecules28031491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex nonnutritive sugars present in human milk. These sugars possess prebiotic, immunomodulatory, and antagonistic properties towards pathogens and therefore are important for the health and well-being of newborn babies. Lower prevalence of breastfeeding around the globe, rising popularity of nutraceuticals, and low availability of HMOs have inspired efforts to develop economically feasible and efficient industrial-scale production platforms for HMOs. Recent progress in synthetic biology and metabolic engineering tools has enabled microbial systems to be a production system of HMOs. In this regard, the model organism Escherichia coli has emerged as the preferred production platform. Herein, we summarize the remarkable progress in the microbial production of HMOs and discuss the challenges and future opportunities in unraveling the scope of production of complex HMOs. We focus on the microbial production of five HMOs that have been approved for their commercialization.
Collapse
|
14
|
Jaroensuk J, Chuaboon L, Chaiyen P. Biochemical reactions for in vitro ATP production and their applications. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Li M, Li C, Luo Y, Hu M, Liu Z, Zhang T. Multi-level metabolic engineering of Escherichia coli for high-titer biosynthesis of 2'-fucosyllactose and 3-fucosyllactose. Microb Biotechnol 2022; 15:2970-2981. [PMID: 36134689 PMCID: PMC9733645 DOI: 10.1111/1751-7915.14152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Fucosyllactoses (FL), including 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high-titer FL biosynthesis by introducing multi-level metabolic engineering strategies, including (1) individual construction of the 2'/3-FL-producing strains through gene combination optimization of the GDP-L-fucose module; (2) screening of rate-limiting enzymes (α-1,2-fucosyltransferase and α-1,3-fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate-limiting enzymes by the RBS screening, fusion peptides and multi-copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2'-FL and 6.28 g/L for 3-FL in shake flasks with a modified-M9CA medium. Fed-batch cultivations of the two strains generated 64.62 g/L of 2'-FL and 40.68 g/L of 3-FL in the 3-L bioreactors, with yields of 0.65 mol 2'-FL/mol lactose and 0.67 mol 3-FL/mol lactose, respectively. This research provides a viable platform for other high-value-added compounds production in microbial cell factories.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Chenchen Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Yejiao Luo
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Miaomiao Hu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Zhu Liu
- Zhejiang Institute for Food and Drug ControlHangzhouChina
| | - Tao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
- International Joint Laboratory on Food Science and SafetyJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
16
|
Shin J, Kim S, Park W, Jin KC, Kim SK, Kweon DH. Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose. J Microbiol Biotechnol 2022; 32:1471-1478. [PMID: 36437520 PMCID: PMC9720067 DOI: 10.4014/jmb.2209.09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seungjoo Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea,
S.K. Kim Phone: +82-31-670-3261 Fax: +82-31-675-3108 E-mail:
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding authors D.H. Kweon Phone: +82-31-290-7869 Fax: +82-31-290-7870 E-mail:
| |
Collapse
|
17
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
18
|
Liu Y, Zhu Y, Wang H, Wan L, Zhang W, Mu W. Strategies for Enhancing Microbial Production of 2'-Fucosyllactose, the Most Abundant Human Milk Oligosaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11481-11499. [PMID: 36094047 DOI: 10.1021/acs.jafc.2c04539] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human milk oligosaccharides (HMOs), a group of structurally diverse unconjugated glycans in breast milk, act as important prebiotics and have plenty of unique health effects for growing infants. 2'-Fucosyllactose (2'-FL) is the most abundant HMO, accounting for approximately 30%, among approximately 200 identified HMOs with different structures. 2'-FL can be enzymatically produced by α1,2-fucosyltransferase, using GDP-l-fucose as donor and lactose as acceptor. Metabolic engineering strategies have been widely used for enhancement of GDP-l-fucose supply and microbial production of 2'-FL with high productivity. GDP-l-fucose supply can be enhanced by two main pathways, including de novo and salvage pathways. 2'-FL-producing α1,2-fucosyltransferases have widely been identified from various microorganisms. Metabolic pathways for 2'-FL synthesis can be basically constructed by enhancing GDP-l-fucose supply and introducing α1,2-fucosyltransferase. Various strategies have been attempted to enhance 2'-FL production, such as acceptor enhancement, donor enhancement, and improvement of the functional expression of α1,2-fucosyltransferase. In this review, current progress in GDP-l-fucose synthesis and bacterial α1,2-fucosyltransferases is described in detail, various metabolic engineering strategies for enhancing 2'-FL production are comprehensively reviewed, and future research focuses in biotechnological production of 2'-FL are suggested.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
19
|
Gao X, Wei C, Qi H, Li C, Lu F, Qin HM. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Food Chem 2022; 401:134199. [PMID: 36115227 DOI: 10.1016/j.foodchem.2022.134199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
D-Allulose, as low-calorie rare sugar, possessed several notable biological activities and was biosynthesized by D-allulose 3-epimerase (DAEase). Here, CcDAE from Clostridium cellulolyticum was successfully immobilization via covalent attachment (RI-CcDAE), and Resin-SpyCatcher/SpyTag-CcDAE modular (DI-CcDAE). Both immobilized CcDAEs exhibited higher thermal and pH stabilities than the free form, and they maintained 80.0 % of relative activity after 7 consecutive cycles and 25 days of storage. Predominantly, DI-CcDAE represented superior catalytic efficiency with a 2.4-fold increase of kcat/Km, compared with RI-CcDAE (0.75 s-1 mM-1 vs 0.31 s-1 mM-1). The RI-CcDAE and DI-CcDAE were then applied in mixed fruit Jiaosu to convert D-fructose into D-allulose, which exhibited the productivity of D-allulose 1.08 g/Lh-1 and 1.57 g/Lh-1, respectively. This research provided a promising directional immobilization strategy for DAEase, and robust biocatalyst for production of functional foodstuff containing D-allulose.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hongbin Qi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
20
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
21
|
Evaluating Enzymatic Productivity—The Missing Link to Enzyme Utility. Int J Mol Sci 2022; 23:ijms23136908. [PMID: 35805910 PMCID: PMC9266678 DOI: 10.3390/ijms23136908] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
Kinetic productivity analysis is critical to the characterization of enzyme catalytic performance and capacity. However, productivity analysis has been largely overlooked in the published literature. Less than 0.01% of studies which report on enzyme characterization present productivity analysis, despite the fact that this is the only measurement method that provides a reliable indicator of potential commercial utility. Here, we argue that reporting productivity data involving native, modified, and immobilized enzymes under different reaction conditions will be of immense value in optimizing enzymatic processes, with a view to accelerating biotechnological applications. With the use of examples from wide-ranging studies, we demonstrate that productivity is a measure of critical importance to the translational and commercial use of enzymes and processes that employ them. We conclude the review by suggesting steps to maximize the productivity of enzyme catalyzed reactions.
Collapse
|
22
|
Li M, Li C, Hu M, Zhang T. Metabolic engineering strategies of de novo pathway for enhancing 2'-fucosyllactose synthesis in Escherichia coli. Microb Biotechnol 2021; 15:1561-1573. [PMID: 34843640 PMCID: PMC9049618 DOI: 10.1111/1751-7915.13977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022] Open
Abstract
2′‐Fucosyllactose (2′‐FL), one of the most abundant human milk oligosaccharides (HMOs), is used as a promising infant formula ingredient owing to its multiple health benefits for newborns. However, limited availability and high‐cost preparation have restricted its extensive use and intensive research on its potential functions. In this work, a powerful Escherichia coli cell factory was developed to ulteriorly increase 2′‐FL production. Initially, a modular pathway engineering was strengthened to balance the synthesis pathway through different plasmid combinations with a resulting maximum 2′‐FL titre of 1.45 g l−1. To further facilitate the metabolic flux from GDP‐l‐fucose towards 2′‐FL, the CRISPR‐Cas9 system was utilized to inactivate the genes including lacZ and wcaJ, increasing the titre by 6.59‐fold. Notably, the co‐introduction of NADPH and GTP regeneration pathways was confirmed to be more conducive to 2′‐FL formation, achieving a 2′‐FL titre of 2.24 g l−1. Moreover, comparisons of various exogenous α1,2‐fucosyltransferase candidates revealed that futC from Helicobacter pylori generated the highest titre of 2′‐FL. Finally, the viability of scaled‐up production of 2′‐FL was evidenced in a 3 l bioreactor with a maximum titre of 22.3 g l−1 2′‐FL and a yield of 0.53 mole 2′‐FL mole−1 lactose.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
23
|
Wan L, Zhu Y, Chen G, Luo G, Zhang W, Mu W. Efficient Production of 2'-Fucosyllactose from l-Fucose via Self-Assembling Multienzyme Complexes in Engineered Escherichia coli. ACS Synth Biol 2021; 10:2488-2498. [PMID: 34415729 DOI: 10.1021/acssynbio.1c00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2'-Fucosyllactose (2'-FL) has been widely used as a nutritional additive in infant formula due to its multifarious nutraceutical and pharmaceutical functions in neonate health. As such, it is essential to develop an efficient and extensive microbial fermentation platform to cater to the needs of the 2'-FL market. In this study, a spatial synthetic biology strategy was employed to promote 2'-FL biosynthesis in recombinant Escherichia coli. First, the salvage pathway for 2'-FL production from l-fucose and lactose was constructed by introducing a bifunctional enzyme l-fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) derived from Bacteroides fragilis and an α-1,2-fucosyltransferase (FutC) derived from Helicobacter pylori into engineered E. coli BL21(DE3). Next, the endogenous genes involved in the degradation and shunting of the substrate and key intermediate were inactivated to improve the availability of precursors for 2'-FL biosynthesis. Moreover, to further improve the yield and titer of 2'-FL, a short peptide pair (RIAD-RIDD) was used to form self-assembling multienzyme complexes in vivo. The spatial localization of peptides and stoichiometry of enzyme assemblies were subsequently optimized to further improve 2'-FL production. Finally, cofactor regeneration was also considered to alleviate the potential cofactor deficiency and redox flux imbalance in the biocatalysis process. Fed-batch fermentation of the final WLS20 strain accumulated 30.5 g/L extracellular 2'-FL with the yield and productivity of 0.661 mol/mol fucose and 0.48 g/L/h, respectively. This research has demonstrated that the application of spatial synthetic biology and metabolic engineering strategies can dramatically enlarge the titer and yield of 2'-FL biosynthesis in engineered E. coli.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Sun D, Zhang J, Li C, Wang TF, Qin HM. Biochemical and structural characterization of a novel thermophilic and acidophilic β-mannanase from Aspergillus calidoustus. Enzyme Microb Technol 2021; 150:109891. [PMID: 34489044 DOI: 10.1016/j.enzmictec.2021.109891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023]
Abstract
β-Mannanases hydrolyze lignocellulosic biomass with the release of mannan oligosaccharides, which are considered as renewable resource in higher plants. Here, we cloned, expressed and characterized a novel endo-β-mannanase (ManAC) from Aspergillus calidoustus. Homology alignment analysis indicated that ManAC belonged to glycosyl hydrolase (GH) 5 family members. The analysis of structural homologous model revealed that five residues, Arg116, Asn231, His305, Tyr307, and Trp370, constituted the active site of ManAC. Glu232 and Glu340, proton donor and nucleophile, formed the catalytic residues of ManAC. The recombinant ManAC exhibited maximal activity at pH 2.5 and 70 °C, and it was acid tolerant at a pH range of 2.0-6.0 and thermostable under 60 °C. Meanwhile, the activity of ManAC was not significantly affected by various metal ions, except for Mg2+ and Ag2+. The recombinant ManAC exhibited the highest β-mannanase activity towards locust bean gum (669.7 U/mg) with the Km and Vmax values of 3.4 mg/mL and 982.4 μmol/min/mg, respectively. These thermophilic and acidophilicc characteristics is better than most extreme β-mannanase. As the first reported mannanse from Aspergillus calidoustus (ManAC), these excellent properties of ManAC strongly promote the synthesis of mannooligosaccharides which have potential for food and feed industrial applications.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China.
| | - Hui-Min Qin
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
25
|
Lacto- N-biose synthesis via a modular enzymatic cascade with ATP regeneration. iScience 2021; 24:102236. [PMID: 33748718 PMCID: PMC7967015 DOI: 10.1016/j.isci.2021.102236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component of human milk, are reported to be beneficial to infant health. The biosynthesis of lacto-N-biose (LNB), the building block for HMOs, suffers from excessive addition of cofactors and intermediate inhibition. Here, we developed an in vitro multienzyme cascade composed of LNB module, ATP regeneration, and pyruvate oxidase-driven phosphate recycling to produce LNB. The integration between ATP regeneration and Pi alleviation increased the LNB conversion ratio and resulted in a ΔG'° decrease of 540 KJ/mol. Under optimal conditions, the LNB conversion ratio was improved from 0.34 to 0.83 mol/mol GlcNAc and the ATP addition decreased to 50%. Finally, 0.96 mol/mol GlcNAc and 71.6 mg LNB g-1 GlcNAc h-1 of LNB yield was achieved in a 100-mL reaction system. The synergistic strategy not only paves the way for producing LNB but also facilitates other chemicals with multienzyme cascades.
Collapse
|
26
|
Kim C, Park M, Yang J, Shin J, Park YC, Kim SK, Kweon DH. Inducible plasmid display system for high-throughput selection of proteins with improved solubility. J Biotechnol 2020; 329:143-150. [PMID: 33373627 DOI: 10.1016/j.jbiotec.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Soluble expression of enzymes inside the cell is a prerequisite for the successful biotransformation of valuable products. Some key enzymes involved in biotransformation processes, however, are hardly expressed in their soluble forms. Here, we propose an inducible plasmid display, which is a molecular evolution strategy coupled with a high-throughput screening and/or selection method, as a simple and powerful tool for improving the solubility of target enzymes. Specifically, the Oct-1 DNA-binding domain and intein (i.e., auto-processing domain) were employed as anchoring and protein trans-splicing motifs to develop the system, in which the probability of protein trans-splicing is dependent on the soluble property of target proteins. The applicability of inducible plasmid display was investigated using an α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori, a highly insoluble and unstable enzyme in the cytoplasmic space of Escherichia coli, as a model protein. One round of the overall inducible plasmid display process, which consists of in vivo production of FucT2 mutants and in vitro screening, enabled soluble expression of FucT2 and selection of plasmids containing the corresponding genetic information. The inducible plasmid display developed in this study will contribute to the rapid and efficient screening and/or selection of soluble proteins.
Collapse
Affiliation(s)
- Chakhee Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jinkyeong Yang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|