1
|
Huang F, Zhang T, Zhu L, Wang H, Zhao Y, Wang Z, Huang Q. Nano-Formulated Pyraclostrobin With Iron Bismuthide Enhances Efficient Utilization of Active Ingredient and Improves Biosafety. Chem Biodivers 2025; 22:e202402934. [PMID: 39788900 DOI: 10.1002/cbdv.202402934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release. These NPs exhibited enhanced anti-Botrytis activity in vitro and superior in vivo performance. On tomato leaves, PYR/FeBi NPs at 80 µg/mL achieved greater than 90% curative and protective efficacy against Botrytis cinerea infection and significantly mitigated lesion expansion, surpassing commercial PYR suspension concentrate (SC) at equivalent concentrations. On tomato seedlings, PYR/FeBi NPs significantly reduced gray mold disease by 89%, compared to 67% with PYR SC at the same concentration. The mechanism underlying this enhanced activity involved stronger disruption of mitochondrial metabolism, including acetylation process, oxalate production, and damage to mycelia and conidia. Further, PYR/FeBi NPs displayed reduced cytotoxicity on human Hek293 and Chinese hamster V79 cells compared to PYR SC. The results highlighted the biocompatibility and potential of PYR/FeBi NPs for efficient utilization of active ingredients in sustainable agriculture.
Collapse
Affiliation(s)
- Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongye Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
2
|
Zhu R, Sun D, He S, Yin J, Xiao W, Yang GF. A Rapid pH-Responsive Pyraclostrobin Delivery System with Enhanced Membrane Passing Property and Fungicidal Activity against Botrytis cinerea. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21796-21807. [PMID: 40145848 DOI: 10.1021/acsami.5c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
As the second most important fungal pathogen, Botrytis cinerea (B. cinerea) poses a serious threat to crop yields and agricultural safety. Pyraclostrobin (PYR), a broad-spectrum QoI fungicide, has been widely utilized since its launch in 2003. However, the inhibitory effects of both PYR technical and PYR formulations on B. cinerea are not outstanding. Even at a concentration of 50 μg/mL, the inhibition rates of B. cinerea by both PYR technical and PYR formulations remain below 85%. In this work, we prepared an acid-responsive Pickering emulsion encapsulating PYR (PYR@BTIB-PE), which completely inhibited B. cinerea at low concentrations (25 μg/mL) for the first time. The PYR@BTIB-PE achieved fragmentation and release within 4 min at pH 5, which was consistent with the pH around B. cinerea. The PYR@BTIB-PE can rapidly release PYR when B. cinerea infected and increased the concentration of PYR around the B. cinerea, thereby enhancing the efficacy of PYR. In addition, the released organic solvent from PYR@BTIB-PE enhanced the passing property of the B. cinerea membrane, facilitating more PYR to enter the body of B. cinerea. The improvement of the membrane passing property and rapid response release of PYR@BTIB-PE worked together to achieve complete inhibition of B. cinerea. Furthermore, the flexible and amphiphilic structures of PYR@BTIB-PE increased its interaction with the leaf surface, completely suppressed droplet splashing, and promoted droplet spreading, thereby reducing pesticide loss and improving the utilization rate of the pesticide. This study presents an efficient and rapid strategy for inhibiting B. cinerea and is also expected to be extended to other antifungal preparations.
Collapse
Affiliation(s)
- Rixin Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dan Sun
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430074, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430074, China
| | - Jun Yin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wang Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Wang YX, Ye Y, Li ZW, Cui GR, Shi XX, Dong Y, Jiang JJ, Sun JY, Guan ZW, Zhang N, Wu QY, Wang F, Zhu XL, Yang GF. Cryo-EM Structures Reveal the Unique Binding Modes of Metyltetraprole in Yeast and Porcine Cytochrome bc1 Complex Enabling Rational Design of Inhibitors. J Am Chem Soc 2024; 146:33903-33913. [PMID: 39601138 DOI: 10.1021/jacs.4c12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cytochrome bc1 (complex III) represents a significant target for the discovery of both drugs and fungicides. Metyltetraprole (MET) is commonly classified as a quinone site inhibitor (QoI) that combats the G143A mutated isolate, which confers high resistance to strobilurin fungicides such as pyraclostrobin (PYR). The binding mode and antiresistance mechanism of MET remain unclear. Here, we determined the high-resolution structures of inhibitor-bound S. cerevisiae complex III (MET, 2.52 Å; PYR, 2.42 Å) and inhibitor-bound porcine complex III (MET, 2.53 Å; PYR, 2,37 Å) by cryo-electron microscopy. The distinct binding modes of MET and PYR were observed for the first time. Notably, the MET exhibited different binding modes in the two species. In S. cerevisiae, the binding site of MET was the same as PYR, serving as a Pm-type inhibitor of the Qo site. However, in porcine, MET acted as a dual-target inhibitor of both Qo and Qi. Based on the structural insights, a novel inhibitor (YF23694) was discovered and demonstrated excellent fungicidal activity against downy mildew and powdery mildew fungi. This work provides a new starting point for the design of the next generation of inhibitors to overcome the resistance.
Collapse
Affiliation(s)
- Yu-Xia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Ying Ye
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zhi-Wen Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Rui Cui
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Xing-Xing Shi
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Ying Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jia-Jia Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jia-Yue Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Ze-Wei Guan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Nan Zhang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Qiong-You Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Fan Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
4
|
de Freitas Oliveira T, Barbosa Vaz da Costa MF, Alessandra Costa Santos T, Dos Santos Wisniewski MJ, Andrade-Vieira LF. Toxicity potential of a pyraclostrobin-based fungicide in plant and green microalgae models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:973-987. [PMID: 39298181 DOI: 10.1080/15287394.2024.2403131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Pyraclostrobin-based fungicides play an effective role in controlling fungal diseases and are extensively used in agriculture. However, there is concern regarding the potential adverse effects attributed to exposure to these fungicides on non-target organisms and consequent influence exerted on ecosystem functioning. Thus, it is essential to conduct studies with model organisms to determine the impacts of these fungicides on different groups of living organisms. The aim of this study was to examine the ecotoxicity associated with exposure to commercial fungicides containing pyraclostrobin. The focus of the analysis involved germination and initial development of seedlings of 4 plant models (Lactuca sativa, Raphanus sativus, Pennisetum glaucum and Triticum aestivum), in addition to determining the population growth rate and total carbohydrate content in microalga Raphidocelis subcapitata. The fungicide pyraclostrobin adversely influenced growth and development of the tested plants, indicating a toxic effect. The fungicide exerted a significant impact on the initial development of seedlings of all model species examined with T. aestivum plants displaying the greatest susceptibility to pyraclostrobin. Plants of this species exhibited inhibitory effects on both aerial parts and roots when treated with a concentration of 4.75 mg/L pyraclostrobin. In addition, the green microalga R. subcapitata was also significantly affected by the fungicide, especially at relatively high concentrations as evidenced by a reduction in total carbohydrate content. This commercial fungicide demonstrated potential phytotoxicity for the tested plant models and was also considered toxic to the selected microalgae, indicating an ecotoxic effect that might affect other organisms in aquatic environments.
Collapse
|
5
|
Xu J, Yan D, Chen Y, Cai D, Huang F, Zhu L, Zhang X, Luan S, Xiao C, Huang Q. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea. PEST MANAGEMENT SCIENCE 2023; 79:3022-3032. [PMID: 36966485 DOI: 10.1002/ps.7477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fungal diseases remain important causes of crop failure and economic losses. As the resistance toward current selective fungicides becomes increasingly problematic, it is necessary to develop efficient fungicides with novel chemotypes. RESULTS A series of novel quinazolin-6-ylcarboxylates which combined the structures of pyridine or heterocyclic motif and the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety, a binding group of ATP-binding site of gefitinib, were evaluated for their fungicidal activity on different phytopathogenic fungi. Most of these compounds showed excellent fungicidal activities against Botrytis cinerea and Exserohilum rostratum, especially compound F17 displayed the highest activity with EC50 values as 3.79 μg mL-1 against B. cinerea and 2.90 μg mL-1 against E. rostratum, which was similar to or even better than those of the commercial fungicides, such as pyraclostrobin (EC50 , 3.68, 17.38 μg mL-1 ) and hymexazol (EC50 , 4.56, 2.13 μg mL-1 ). Moreover, compound F17 significantly arrested the lesion expansion of B. cinerea infection on tomato detached leaves and strongly suppressed grey mold disease on tomato seedlings in greenhouse. The abilities of compound F17 to induce cell apoptosis of the non-germinated spores, to limit oxalic acid production, to reduce malate dehydrogenase (MDH) expression, and to block the active pocket of MDH protein were demonstrated in B. cinerea. CONCLUSION The novel quinazolin-6-ylcarboxylates containing ATP-binding site-directed moiety, especially compound F17, could be developed as a potential fungicidal candidate for further study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Danni Cai
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Chen Y, Yan D, Xu J, Xiong H, Luan S, Xiao C, Huang Q. The importance of selecting crystal form for triazole fungicide tebuconazole to enhance its botryticidal activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158778. [PMID: 36122714 DOI: 10.1016/j.scitotenv.2022.158778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The growing evidences of resistant fungi stimulate fully understanding tebuconazole regarding its crystal structure on fungicidal activity. In this study, the crystal structures of six technical tebuconazoles (BX, HH, JP, QZ, SJ, and YT) were characterized by using high-resolution X-ray powder diffraction and three-dimensional crystal structure modeling. A structure-activity relationship of the tebuconazoles on the susceptible (HLS and YJS) or resistant (XHR) Botrytis cinerea isolates was analyzed, the differential tricarboxylic acid (TCA) cycle metabolism was determined, and molecular docking with sterol 14α-demethylase (CYP51) was performed. The results showed that tebuconazole existed in three types of crystal forms: an overlapping-pair conformation, a side-by-side-pair conformation, and a parallel-pair conformation. QZ with the parallel-pair conformation and the minimum crystal cell volume exhibited a higher activity and a lower resistant level. XHR possessed a higher content of TCA cycle metabolites and phosphate than YJS, but the exposure to QZ significantly reduced the contents of citrate, isocitrate, α-ketoglutarate and oxaloacetate in XHR, as did the exposure to other technical tebuconazoles. Moreover, the point mutations F487L, G464S, and G443S altered the binding properties of chiral stereoscopic R-QZ with CYP51 protein. Especially the G443S mutation promoted a weak linking of R-QZ with LEU380 and TYR126, and greatly slashed the binding action at lower docking score. In conclusion, our results evidenced an efficient crystal conformation of tebuconazole to improve botryticidal activity and a potential adaptability of B. cinerea to tebuconazole inhibition in TCA cycle metabolism and CYP51 protein mutation.
Collapse
Affiliation(s)
- Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ciying Xiao
- School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
7
|
Luo B, Ning Y, Rao B. Comprehensive Overview of β-Methoxyacrylate Derivatives as Cytochrome bc1 Inhibitors for Novel Pesticide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15615-15630. [PMID: 36480156 DOI: 10.1021/acs.jafc.2c04820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
β-Methoxyacrylate derivatives represent a new class of pesticides, which have attracted increasing attention owing to their unique structure, broad biological activity, and unique mechanisms of action. They inhibit mitochondrial respiration via preventing electron transfer at the Qo site of the cytochrome bc1 complex and thus are identified as cyt bc1 inhibitors. A variety of β-methoxyacrylate derivatives have been reported by many research groups for discovery of novel pesticides with improved expected activities. This review focuses on development of β-methoxyacrylate derivatives with great significance as pesticides such as fungicides, acaricides, insecticides, herbicides, and antiviral agents. In addition, the structure-activity relationships (SARs) of β-methoxyacrylate derivatives are summarized. Moreover, the cause of resistance to β-methoxyacrylate fungicides and some solutions are also introduced. Finally, the development trend of β-methoxyacrylate derivatives as pesticides is explored. We hope the review will give a guide to develop novel β-methoxyacrylate pesticides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, China
| | - Benqiang Rao
- College of Life Sciences, Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
8
|
Zhao Y, Qin XJ, Wang ZJ, Jin Q, Wang XN, Chen SS, Luo XD. Amphotericin B and 5-flucytosine as fungicides against Penicillium italicum for citrus fruit rot. POSTHARVEST BIOLOGY AND TECHNOLOGY 2022; 193:112058. [DOI: 10.1016/j.postharvbio.2022.112058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
|
9
|
Wei M, Dhanasekaran S, Yang Q, Ngolong Ngea GL, Godana EA, Zhang H. Degradation and stress response mechanism of Cryptococcus podzolicus Y3 on ochratoxin A at the transcriptional level. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Shang Z, Liu M, Hu W, Deng T, Su X, Hou B, Wang J, Gong J. Construction and application of the qualitative and quantitative analysis system of three boscalid polymorphs based on solid-state analytical methods and chemometric tools. CrystEngComm 2022. [DOI: 10.1039/d2ce00152g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view of the important influence of solid form on the production and use of agrochemical, it is crucial to develop the accurate and useful qualitative and quantitative analysis system...
Collapse
|
11
|
Dominguez AN, Emmert GE, Gil DM, Álvarez RMS. Experimental and theoretical vibrational study of the fungicide pyraclostrobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119888. [PMID: 34015601 DOI: 10.1016/j.saa.2021.119888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The vibrational study of the pyraclostrobin (methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl}phenyl) N-methoxycarbamate) molecule, a synthetic fungicide for agricultural uses, was performed. Pyraclostrobin belongs to the strobilurin family and acts by inhibiting the fungus respiratory chain at the level of Complex III, becoming an excellent agent for preventive, curative and eradicative activities against a wide range of fungal plant pathogens. However, its presence needs to be monitored to avoid the excessive and/or improper use that may compromise human or environmental health. The FTIR and Raman spectra of pyraclostrobin in pure solid state were recorded and compared with those obtained from both the substance in CH2Cl2 solution and in an agricultural commercial product (Comet® BASF). The spectral analysis was complemented with quantum-chemical calculations at the DFT level (B3LYP/6-311G*) for the predictions of the molecular geometry and its vibrational behavior. The high flexibility of the molecule was explored by performing potential energy scans on several dihedral angles and the results suggested that the main conformer of pyraclostrobin is that possessing the ortho-substituted benzene ring in perpendicular orientation regarding the plane that contains the ether group and the pyrazole ring, although the presence of a second preferred conformation in the experimental vibrational spectra was not ruled out. Among the many vibrational bands of pyraclostrobin that were well identified in the spectrum of the composite product for agricultural use, the one located at 936 cm-1 stood out. This signal was assigned to a vibration of the pyrazole ring and promised to be a good candidate as marker of the presence of the fungicide in complex matrixes.
Collapse
Affiliation(s)
- Alfredo Nicolás Dominguez
- Instituto de Química del Noroeste Argentino (INQUINOA), CONICET-UNT, Ayacucho 471, San Miguel de Tucumán, CP 4000 Tucumán, Argentina; Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, UNT, Ayacucho 471, San Miguel de Tucumán, T4000INI Tucumán, Argentina
| | - Germán Ezequiel Emmert
- Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, UNT, San Lorenzo 456, San Miguel de Tucumán, T4000CAN Tucumán, Argentina
| | - Diego Mauricio Gil
- Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, UNT, Ayacucho 471, San Miguel de Tucumán, T4000INI Tucumán, Argentina; Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL), CONICET-UNT, Av. Kirchner 1900, San Miguel de Tucumán, CP 4000 Tucumán, Argentina
| | - Rosa María Susana Álvarez
- Instituto de Química del Noroeste Argentino (INQUINOA), CONICET-UNT, Ayacucho 471, San Miguel de Tucumán, CP 4000 Tucumán, Argentina; Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, UNT, San Lorenzo 456, San Miguel de Tucumán, T4000CAN Tucumán, Argentina.
| |
Collapse
|
12
|
Liang Y, Song J, Dong H, Huo Z, Gao Y, Zhou Z, Tian Y, Li Y, Cao Y. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147422. [PMID: 33991920 DOI: 10.1016/j.scitotenv.2021.147422] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 05/18/2023]
Abstract
In this work, a pH-responsive pesticide delivery system using mesoporous silica nanoparticles (MSNs) as the porous carriers and coordination complexes of Cu ions and tannic acid (TA-Cu) as the capping agent was established for controlling pyraclostrobin (PYR) release. The results showed the loading capacity of PYR@MSNs-TA-Cu nanoparticles for pyraclostrobin was 15.7 ± 0.5% and the TA-Cu complexes deposited on the MSNs surface could protect pyraclostrobin against photodegradation effectively. The nanoparticles had excellent pH responsive release performance due to the decomposition of TA-Cu complexes under the acid condition, which showed 8.53 ± 0.37%, 82.38 ± 1.67% of the encapsulated pyraclostrobin were released at pH 7.4, pH 4.5 after 7 d respectively. The contact angle and adhesion work of PYR@MSNs-TA-Cu nanoparticles on rice foliage were 86.3° ± 2.7° and 75.8 ± 3.1 mJ/m2 after 360 s respectively, indicating that TA on the surface of the nanoparticles could improve deposition efficiency and adhesion ability on crop foliage. The control effect of PYR@MSNs-TA-Cu nanoparticles against Rhizoctonia solani with 400 mg/L of pyraclostrobin was 85.82% after 7 d, while that of the same concentration of pyraclostrobin EC was 53.05%. The PYR@MSNs-TA-Cu nanoparticles did not show any phytotoxicity to the growth of rice plants. Meanwhile, the acute toxicity of PYR@MSNs-TA-Cu nanoparticles to zebrafish was decreased more than 9-fold compared with that of pyraclostrobin EC. Thus, pH-responsive PYR@MSNs-TA-Cu nanoparticles have great potential for enhancing targeting and environmental safety of the active ingredient.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China; College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiehui Song
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hongqiang Dong
- College of Plant Science, Tarim University, Alaer, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|