1
|
Ntezimana B, Xu W, Li Y, Zhou J, Pathak S, Chen Y, Yu Z, Zhang D, Ni D. Integrated Transcriptomic and Metabolomic Analyses Reveal Changes in Aroma- and Taste-Related Substances During the Withering Process of Black Tea. Foods 2024; 13:3977. [PMID: 39683049 DOI: 10.3390/foods13233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Withering is one of the major processing steps critical for the quality of black tea. In this study, we investigated the mechanisms underlying the physicochemical changes in metabolites and gene expression during the withering process of black tea using metabolomic and transcriptomic approaches, respectively. Based on gas chromatography/mass spectrometry non-targeted metabolomic approaches (GC-MS) and ultra-high performance liquid chromatograph-tandem mass spectrometry (UHPLC-MS/MS), a total of 76 volatile compounds and 160 non-volatile compounds were identified from tea leaves, respectively. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) for the comparative combination of withering time (i.e., W4h, W6h, W8h, W10h, and W12h) compared with CK (i.e., fresh leaves) were 3634, 2906, 4127, 5736, and 7650, respectively. The core genes in starch metabolism, namely alpha-amylase (AMY) and beta-amylase (BAM), were upregulated as withering time increased. AMY and BAM contributed to the decomposition of starch to increase the soluble sugars. The content of tea leaf alcohols and aldehydes, which are the vital contributors for greenish aroma, gradually decreased as withering time increased due to the downregulation of associated genes while the compounds related to sweet and fruity characteristics increased due to the upregulated expression of related genes. Most DEGs involved in amino acids were significantly upregulated, leading to the increase in free amino acids content. However, DEGs involved in catechins metabolism were generally downregulated during withering, and resulted in a reduction in catechins content and the accumulation of theaflavins. The same trend was observed in alpha-linolenic acid metabolism-related genes that were downregulated and enhanced the reduction in grassy aroma in black tea. The weighted gene co-expression network analysis (WGCNA) of DEGs showed that one module can be associated with more components and one component can be regulated by various modules. Our findings provide new insights into the quality formation of black tea during the withering process.
Collapse
Affiliation(s)
- Bernard Ntezimana
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuchuan Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Sujan Pathak
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Qi D, Shi Y, Lu M, Ma C, Dong C. Effect of withering/spreading on the physical and chemical properties of tea: A review. Compr Rev Food Sci Food Saf 2024; 23:e70010. [PMID: 39267185 DOI: 10.1111/1541-4337.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Ye Y, Gong Y, Huang P, Luo F, Gan R, Fang C. Dynamic changes in the non-volatile and flavour compounds in withered tea leaves of three different colour cultivars based on multi-omics. Food Chem 2024; 449:139281. [PMID: 38608608 DOI: 10.1016/j.foodchem.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.
Collapse
Affiliation(s)
- Yulong Ye
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Yiyun Gong
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Ping Huang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Fan Luo
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Chunyan Fang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| |
Collapse
|
4
|
Wang X, Cao J, Cheng X, Liu X, Zhu W, Li Y, Wan X, Chen S, Liu L. UV-B application during the aeration process improves the aroma characteristics of oolong tea. Food Chem 2024; 435:137585. [PMID: 37776653 DOI: 10.1016/j.foodchem.2023.137585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Solar withering is essential for the aroma formation of oolong tea, but due to the rainy and humid weather in plantation areas, solar withering became insufficient which seriously limits high-grade oolong tea production. This study aims to investigate ultraviolet B (UV-B) effects on the aroma characteristics of oolong tea and its feasibility in improving tea aroma quality. Sensory evaluation, odorant quantitation, and aroma characteristic analysis suggested UV-B application during the aeration process provided similar effects as solar withering in improving the aroma quality of oolong tea. UV-B application significantly increased fruity and floral odorants (4-hexanolide, α-farnesene, and β-ocimene by 44%, 74%, and 37%, respectively), and decreased green and fatty odorants (hexanal, (E)-2-octenal, and (Z)-4-heptenal by 42%, 45%, and 27%, respectively). These indicate UV-B is crucial for the flowery and fruity aroma formation of oolong tea, which can be potentially applied to oolong tea production, especially under unsunny weather.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingjie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | | | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Li D, Jin Y, Lu QH, Ren N, Wang YQ, Li QS. Genome-wide identification and expression analysis of NIN-like protein (NLP) genes: Exploring their potential roles in nitrate response in tea plant (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108340. [PMID: 38199025 DOI: 10.1016/j.plaphy.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
NIN-like proteins (NLPs) are evolutionarily conserved transcription factors that are unique to plants and play a pivotal role in responses to nitrate uptake and assimilation. However, a comprehensive analysis of NLP members in tea plants is lacking. The present study performed a genome-wide analysis and identified 33 NLP gene family members of Camellia sinensis that were distributed unequally across 5 chromosomes. Subcellular localisation predictions revealed that all CsNLP proteins were localised in the nucleus. Conservative domain analysis revealed that all of these proteins contained conserved RWP-RK and PB1 domains. Phylogenetic analysis grouped the CsNLP gene family into four clusters. The promoter regions of CsNLPs harboured cis-acting elements associated with plant hormones and abiotic stress responses. Expression profile analysis demonstrated that CsNLP8 was significantly upregulated in roots under nitrate stress conditions. Subcellular localisation analysis found CsNLP8 localised to the nucleus. Dual-luciferase reporter assay demonstrated that CsNLP8 positively regulated the expression of a nitrate transporter gene (CsNRT2.2). These findings provide a comprehensive characterisation of NLP genes in Camellia sinensis and offer insights into the biological function of CsNLP8 in regulating the response to nitrate-induced stress.
Collapse
Affiliation(s)
- Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ya Jin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qin-Hua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Ren
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ying-Qi Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Jia W, Wu X, Liu N, Xia Z, Shi L. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chem 2023; 409:135322. [PMID: 36584532 DOI: 10.1016/j.foodchem.2022.135322] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Postharvest senescence and quality deterioration of fresh tea leaves occurred due to the limitation of processing capacity. Refrigerated storage prolongs the shelf life of fresh tea. In this study, quantitative fusion omics delineated the translational landscape of metabolites and proteins in time-series (0-12 days) refrigerated tea by UHPLC-Q-Orbitrap HRMS. Accurate quantification results showed the content of amino acids, especially l-theanine, decreased with the lengthening of the storage duration (15.57 mg g-1 to 7.65 mg g-1) driven by theanine synthetase. Downregulation of enzyme 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase expression led to methionine degradation (6.29 µg g-1 to 1.78 µg g-1). Refrigerated storage inhibited serine carboxypeptidase-like acyltransferases activity (59.49 % reduction in 12 days) and induced the polymerization of epicatechin and epigallocatechin and generation of procyanidin dimer and δ-type dehydrodicatechin, causing the manifestation of color deterioration. A predictive model incorporating zero-order reaction and Arrhenius equation was constructed to forecast the storage time of green tea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Zhang Z, Chen W, Tao L, Wei X, Gao L, Gao Y, Suo J, Yu W, Hu Y, Yang B, Jiang H, Farag MA, Wu J, Song L. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chem 2023; 408:135214. [PMID: 36565552 DOI: 10.1016/j.foodchem.2022.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Amino acids play critical roles in physiological processes and also contribute significantly to fruit quality. In this study, the effect of exogenous ethylene on amino acids metabolism and related genes expression in Torreya grandis were investigated. The results revealed that ethylene treatment (3000 μL L-1 for 24 h) significantly increased amino acids level. Umami amino acids were distinctly upregulated in ethylene-treated versus control nuts, with glutamic and aspartic acids to demonstrate 1.9-fold and 2.1-fold increase. Transcriptome analysis revealed that deferentially expressed genes were mainly enriched in alanine aspartate and glutamate metabolism. RT-qPCR confirmed that ethylene treatment up-regulated expression of their biosynthesis genes (TgGOGAT1, TgAATC1, TgAATC4) concurrent with suppression of their degradation enzymes (TgGS2, TgGAD1, TgGAD3, TgASNS1). Ethylene treatment appears to promote umami taste-active amino acids and improve T. grandis nut quality post-harvest.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Xixing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Li C, Lin J, Sun Y, Wei S, Wu L. The Impact of Different Withering Approaches on the Metabolism of Flavor Compounds in Oolong Tea Leaves. Foods 2022; 11:foods11223601. [PMID: 36429193 PMCID: PMC9689020 DOI: 10.3390/foods11223601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, complementary metabolomic and proteomic analyses were conducted on the solar- and indoor-withered oolong tea leaves, and freshly plucked leaves as the control, for the purpose to reveal the mechanisms underlying the initial formation of some flavor determinants during the early stage of oolong tea processing. As a result, a total of 978 non-volatile compounds and 152 volatile compounds were identified, the flavonoids and several esters were differently accumulated in various tea samples. In total, 7048 proteins were qualitatively and quantitatively determined, the analysis on pathway enrichment showed that phenylpropanoid, flavonoid metabolisms, and protein processing in endoplasmic reticulum were the major pathways discriminating the different tea samples. The joint protein-metabolite analysis showed that the multiple stresses such as dehydration, heat, and ultra-violet irradiation occurred during the withering step induced the dynamic and distinct changes in the biochemical network in the treated leaves compared to fresh leaves. The significant decreases in flavonoids, xanthine alkaloids, and several amino acids contributed to the alleviation of bitter or astringent taste of withered leaves, although the decomposition of L-theanine resulted in the loss of umami flavor over the solar-withering step. Moreover, the fruity or floral aromas, especially volatile terpenoids and phenylpropanoids/benzenoids, were retained or accumulated in the solar withered leaves, potentially aiding the formation of a better characteristic flavor of oolong tea made by indoor withered tea leaves. Distinct effects of solar- and indoor-withering methods on the flavor determinant formation provide a novel insight into the relationship between the metabolite accumulation and flavor formation during the withering step of oolong tea production.
Collapse
Affiliation(s)
- Yahui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (S.W.); (L.W.)
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.W.); (L.W.)
| |
Collapse
|
9
|
Effects of dynamic extraction conditions on the chemical composition and sensory quality traits of green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Targeted metabolomics and DIA proteomics-based analyses of proteinaceous amino acids and driving proteins in black tea during withering. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Revealing the effects of Moringa oleifera Lam. leaves addition on Fuzhuan Brick Tea by metabolomic and microbiota analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Yu P, Huang H, Zhao X, Zhong N, Zheng H. Dynamic variation of amino acid content during black tea processing: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ni Zhong
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
13
|
Chen Y, Wang F, Wu Z, Jiang F, Yu W, Yang J, Chen J, Jian G, You Z, Zeng L. Effects of Long-Term Nitrogen Fertilization on the Formation of Metabolites Related to Tea Quality in Subtropical China. Metabolites 2021; 11:metabo11030146. [PMID: 33801425 PMCID: PMC8000315 DOI: 10.3390/metabo11030146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
As a main agronomic intervention in tea cultivation, nitrogen (N) application is useful to improve tea yield and quality. However, the effects of N application on the formation of tea quality-related metabolites have not been fully studied, especially in long-term field trials. In this study, a 10-year field experiment was conducted to investigate the effect of long-term N application treatments on tea quality-related metabolites, their precursors, and related gene expression. Long-term N application up-regulated the expression of key genes for chlorophyll synthesis and promoted its synthesis, thus increasing tea yield. It also significantly increased the contents of total free amino acids, especially l-theanine, in fresh tea leaves, while decreasing the catechin content, which is conducive to enhancing tea liquor freshness. However, long-term N application significantly reduced the contents of benzyl alcohol and 2-phenylethanol in fresh tea leaves, and also reduced (E)-nerolidol and indole in withered leaves, which were not conducive to the formation of floral and fruity aroma compounds. In general, an appropriate amount of N fertilizer (225 kg/hm2) balanced tea yield and quality. These results not only provide essential information on how N application affects tea quality, but also provide detailed experimental data for field fertilization.
Collapse
Affiliation(s)
- Yuzhen Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Feng Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Zhidan Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Fuying Jiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350013, China;
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Zhiming You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
- Correspondence: (Z.Y.); (L.Z.)
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
- Correspondence: (Z.Y.); (L.Z.)
| |
Collapse
|
14
|
Liu J, Cheng C, Zhang Z, Yang S, Zhang X. Optimization of celery leaf tea processing and the volatile components analysis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Junchen Liu
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chenxia Cheng
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Zhiwei Zhang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Shaolan Yang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Xinfu Zhang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| |
Collapse
|