1
|
Singh R, Shahul R, Kumar V, Yadav AK, Mehta PK. Microbial amidases: Characterization, advances and biotechnological applications. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:44-58. [PMID: 39811779 PMCID: PMC11732141 DOI: 10.1016/j.biotno.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The amidases (EC 3.5.1.4) are versatile hydrolase biocatalysts that have been the attention of academia and industries for stereo-selective synthesis and bioremediation. These are categorized based on the amino acid sequence and substrate specificity. Notably, the Signature amidase family is distinguished by a characteristic signature sequence, GGSS(S/G)GS, which encompasses highly conserved Ser-Ser-Lys catalytic residues, and the amidases belonging to this family typically demonstrate a broad substrate spectrum activity. The amidases classified within the nitrilase superfamily possess distinct Glu-Lys-Cys catalytic residues and exhibit activity towards small aliphatic substrates. Recent discoveries have underscored the potential role of amidases in the degradation of toxic amides present in polymers, insecticides, and food products. This expands the horizons for amidase-mediated biodegradation of amide-laden pollutants and fosters sustainable development alongside organic synthesis. The burgeoning global production facilities are expected to drive a heightened demand for this enzyme, attributable to its promising chemo-, regio-, and enantioselective hydrolysis capabilities for a variety of amides. Advances in protein engineering have enhanced the catalytic efficiency, structural stability, and substrate selectivity of amidases. Concurrently, the heterologous expression of amidase genes sourced from thermophiles has facilitated the development of highly stable amidases with significant industrial relevance. Beyond their biotransformation capabilities concerning amides, through amido-hydrolase and acyltransferase activities, recent investigations have illuminated the potential of amidase-mediated degradation of amide-containing pollutants in soil and aquatic environments. This review offers a comprehensive overview of recent advancements pertaining to microbial amidases (EC 3.5.1.4), focusing on aspects such as their distribution, gene mining methodologies, enzyme stability, protein engineering, reusability, and biocatalytic efficacy in organic synthesis and biodegradation.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Refana Shahul
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Vijay Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| |
Collapse
|
2
|
Yi P, Liu M, Hao Y, Wang Z, Liu H, Cai X, Cheng F, Liu Z, Xue Y, Jin L, Zheng Y. Identification of efficient amine transaminase and applicability in dual transaminases cascade for synthesis of L-phosphinothricin. Enzyme Microb Technol 2024; 180:110501. [PMID: 39197217 DOI: 10.1016/j.enzmictec.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from Bradyrhizobium diazoefficiens ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal in situ, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.
Collapse
Affiliation(s)
- Puhong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengdan Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuhua Hao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ziwen Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hanlin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yaping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liqun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
3
|
Wang YS, Gong MH, Wang JH, Yu JC, Li MJ, Xue YP, Zheng YG. Heterologous expression of a deacetylase and its application in L-glufosinate preparation. Bioprocess Biosyst Eng 2023; 46:1639-1650. [PMID: 37733076 DOI: 10.1007/s00449-023-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 μmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.
Collapse
Affiliation(s)
- Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Hua Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jin-Hao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Cheng Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Jing Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Zhu Y, Xu Y, Dai Y, Zhang G, Ji C, Zhang Q, Zhao M. Comparing the enantioselective toxicity on cell cycle and apoptosis of DL-glufosinate and L-glufosinate to SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165106. [PMID: 37356769 DOI: 10.1016/j.scitotenv.2023.165106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Glufosinate (Glu), a broad-spectrum and highly effective non-selective herbicide, behaves in typical chiral features to target organisms. However, the information on the enantioselective toxicity of DL-Glu and L-Glu against non-target organisms is still limited especially at environmental concentrations. In this study, we investigated the potential mechanism accounting for the enantioselective cytotoxicity of Glu based on cell cycle and apoptosis. Results showed that DL-Glu and L-Glu had no suppression on cell viability at 10-5 M, however, SH-SY5Y cells were significantly arrested at G1/G0 phase after L-Glu exposure compared with DL-Glu. The apoptosis assay exhibited an increase in late apoptosis cells and a decrease in viable cells for DL-Glu and L-Glu treatment. The bioinformatics analysis demonstrated that alterations in transcription translation and signal transduction including "calcium signaling pathway", "Wnt signaling pathway", "FoxO signaling pathway" were the possible pathways responsible for Glu-induced enantioselectivity in cell cycle and apoptosis. Interestingly, the Gene Set Enrichment Analysis (GSEA) also revealed the probable association between DL-Glu exposure and degenerative diseases. These findings serve as a reminder that caution should be exercised not only when using pesticide racemates but also when promoting or applying single- or enriched-isomer pesticides.
Collapse
Affiliation(s)
- Yingying Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Yongan Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guizhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
5
|
Cheng F, Zhang J, Jiang Z, Wu X, Xue Y, Zheng Y. Development of an NAD(H)‐Driven Biocatalytic System for Asymmetric Synthesis of Chiral Amino Acids. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia‐Min Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhen‐Tao Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiao‐Hu Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|