1
|
Huang J, Wu H, Gao R, Wu L, Wang M, Chu Y, Shi Y, Xiang L, Yin Q. Integrated Multi-Omics Analysis Reveals Glycosylation Involving 2-O-β-D-Glucopyranosyl-L-Ascorbic Acid Biosynthesis in Lycium barbarum. Int J Mol Sci 2025; 26:1558. [PMID: 40004023 PMCID: PMC11855784 DOI: 10.3390/ijms26041558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
L-ascorbic acid (vitamin C, AA) is widely present in plants, but humans lack the ability to synthesize it independently. As a potent reducing agent, AA is susceptible to oxidation, making the enhancement of its stability crucial. 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG) is a stable natural derivative of AA with glycosylation, initially discovered in the fruits of Lycium barbarum. Understanding the biosynthesis of AA-2βG is crucial for enhancing its production in L. barbarum. While the established biosynthesis pathway of AA constitutes the upstream of AA-2βG biosynthesis, the conclusive step of β-glycosylation remains unclear. We identified a L. barbarum cultivar by UPLC, ZN01, with a high content of AA-2βG, and compared its leaves, immature fruits, and mature fruits to a normal AA-2βG content L. barbarum cultivar for metabolomic and transcriptomic analysis. The RNA-seq and RT-qPCR analysis revealed that the expression levels of genes involved in the AA biosynthesis pathway did not consistently correlate with AA-2βG content, suggesting that the final glycosylation step may be a key determinant of AA-2βG accumulation. Subsequently, utilizing phylogenetic and co-expression analysis, we identified ten UDP-glycosyltransferases (UGTs) and three β-glucosidases (BGLUs) which may be involved in the crucial step of the conversion from AA to AA-2βG, and the UGTs' activities were predicted through molecular docking. Lastly, we speculated that the presence of the glycosylation process of AA might have a crucial role in maintaining AA homeostasis in L. barbarum, and deliberated on potential correlations between AA, carotenoids, and anthocyanins. Our integrated multi-omics analysis provides valuable insights into AA-2βG biosynthesis in L. barbarum, identifying thirteen candidate genes and highlighting the complex interplay between AA, carotenoids, and anthocyanins. These findings have implications for improving AA-2βG content in L. barbarum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Xiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
3
|
Li C, Pang M, Li Y, Han L, Fan Y, Xin X, Zhang X, Zhang N, Qin Y. Protective effect of vitamin C against tetrachlorobenzoquinone-induced 5-hydroxymethylation-dependent apoptosis in HepG2 cells mainly via the mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115097. [PMID: 37271103 DOI: 10.1016/j.ecoenv.2023.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is an active metabolite of pentachlorophenol, and stimulates the accumulation of ROS to trigger apoptosis. The preventive effect of vitamin C (Vc) against TCBQ-induced apoptosis in HepG2 cells is unknown. And there is little known about TCBQ-triggered 5-hydromethylcytosine (5hmC)-dependent apoptosis. Here, we confirmed that Vc alleviated TCBQ-induced apoptosis. Through investigating the underlying mechanism, we found TCBQ downregulated 5hmC levels of genomic DNA in a Tet-dependent manner, with a particularly pronounced decrease in the promoter region, using UHPLC-MS-MS analysis and hydroxymethylated DNA immunoprecipitation sequencing. Notably, TCBQ exposure resulted in alterations of 5hmC abundance to ∼91% of key genes at promoters in the mitochondrial apoptosis pathway, along with changes of mRNA expression in 87% of genes. By contrast, 5hmC abundance of genes only exhibited slight changes in the death receptor/ligand pathway. Interestingly, the pretreatment with Vc, a positive stimulator of 5hmC generation, restored 5hmC in the genomic DNA to near-normal levels. More notably, Vc pretreatment further counter-regulated TCBQ-induced alteration of 5hmC abundance in the promoter with 100% of genes, accompanying the reverse modulation of mRNA expressions in 89% of genes. These data from Vc pretreatment supported the relationship between TCBQ-induced apoptosis and the altered 5hmC abundance. Additionally, Vc also suppressed TCBQ-stimulated generation of ROS, and further increased the stability of mitochondria. Our study illuminates a new mechanism of TCBQ-induced 5hmC-dependent apoptosis, and the dual mechanisms of Vc against TCBQ-stimulated apoptosis via reversely regulating 5hmC levels and scavenging ROS. The work also provided a possible strategy for the detoxification of TCBQ.
Collapse
Affiliation(s)
- Cuiping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Mengfan Pang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yaping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Lirong Han
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yajiao Fan
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xuelian Xin
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xian Zhang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ning Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Shandong 253023, PR China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| |
Collapse
|
4
|
Zhang Y, Bian X, Yan G, Sun B, Miao W, Huang M, Li N, Wu JL. Discovery of novel ascorbic acid derivatives and other metabolites in fruit of Rosa roxburghii Tratt through untargeted metabolomics and feature-based molecular networking. Food Chem 2023; 405:134807. [DOI: 10.1016/j.foodchem.2022.134807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
5
|
Zhu B, Zhang W, Qin Y, Zhao J, Li S. Quality evaluation of Lycium barbarum L. fruits from different regions in China based on 2-O-β-D-glucopyranosyl-L-ascorbic acid. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|