1
|
Zhu J, Ji G, Chen B, Yan B, Ren F, Li N, Zhu X, He S, Mu Z, Liu H. High-throughput near-infrared spectroscopy for detection of major components and quality grading of peas. Front Nutr 2024; 11:1505407. [PMID: 39717396 PMCID: PMC11663664 DOI: 10.3389/fnut.2024.1505407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Pea (Pisum sativum L.) is a nutrient-dense legume whose nutritional indicators influence its functional qualities. Traditional methods to identify these components and examine the relationships between their contents could be more laborious, hindering the quality assessment of the varieties of peas. This study conducted a statistical analysis of data about the sensory and physicochemical nutritional attributes of peas acquired using traditional techniques. Additionally, 90 sets of spectral data were obtained using a portable near-infrared spectrometer, which were then integrated with chemical values to create a near-infrared model for the basic ingredient content of peas. The correlation analysis revealed significant findings: pea starch displayed a substantial negative correlation with moisture, crude fiber, and crude protein, while showing a highly significant positive correlation with pea seed thickness. Furthermore, pea protein exhibited a significant positive correlation with crude fiber and crude fat. Cluster analysis classified all pea varieties into three distinct groups, successfully distinguishing those with elevated protein content, high starch content, and low-fat content. The combined contribution of PC1 and PC2 in the principal component analysis (PCA) was 51.2%. Partial least squares regression (PLSR) and other spectral preprocessing methods improved the predictive model, which performed well with an external dataset, with calibration coefficients of 0.89-0.99 and prediction coefficients of 0.71-0.88. This method enables growers and processors to efficiently analyze the composition of peas and evaluate crop quality, thereby enhancing food industry development.
Collapse
Affiliation(s)
- Jingwen Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| | - Guozhi Ji
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia, China
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety of Inner Mongolia Enterprise, Hohhot, Inner Mongolia, China
| | - Bingyu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Bangyu Yan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| | - Ning Li
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia, China
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety of Inner Mongolia Enterprise, Hohhot, Inner Mongolia, China
| | - Xuchun Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| | - Zhishen Mu
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia, China
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety of Inner Mongolia Enterprise, Hohhot, Inner Mongolia, China
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China
| |
Collapse
|
2
|
García Arteaga V, Demand V, Kern K, Strube A, Szardenings M, Muranyi I, Eisner P, Schweiggert-Weisz U. Enzymatic Hydrolysis and Fermentation of Pea Protein Isolate and Its Effects on Antigenic Proteins, Functional Properties, and Sensory Profile. Foods 2022; 11:118. [PMID: 35010244 PMCID: PMC8750503 DOI: 10.3390/foods11010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Combinations of enzymatic hydrolysis using different proteolytic enzymes (papain, Esperase®, trypsin) and lactic fermentation with Lactobacillus plantarum were used to alter potential pea allergens, the functional properties and sensory profile of pea protein isolate (PPI). The order in which the treatments were performed had a major impact on the changes in the properties of the pea protein isolate; the highest changes were seen with the combination of fermentation followed by enzymatic hydrolysis. SDS-PAGE, gel filtration, and ELISA results showed changes in the protein molecular weight and a reduced immunogenicity of treated samples. Treated samples showed significantly increased protein solubility at pH 4.5 (31.19-66.55%) and at pH 7.0 (47.37-74.95%), compared to the untreated PPI (6.98% and 40.26%, respectively). The foaming capacity was significantly increased (1190-2575%) compared to the untreated PPI (840%). The treated PPI showed reduced pea characteristic off-flavors, where only the treatment with Esperase® significantly increased the bitterness. The results from this study suggest that the combination of enzymatic hydrolysis and lactic fermentation is a promising method to be used in the food industry to produce pea protein ingredients with higher functionality and a highly neutral taste. A reduced detection signal of polyclonal rabbit anti-pea-antibodies against the processed protein preparations in ELISA furthermore might indicate a decreased immunological reaction after consumption.
Collapse
Affiliation(s)
- Verónica García Arteaga
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
- Center of Life and Food Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Victoria Demand
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
| | - Karolin Kern
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (K.K.); (M.S.)
| | - Andrea Strube
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
| | - Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (K.K.); (M.S.)
| | - Isabel Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
| | - Peter Eisner
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
- ZIEL—Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Steinbeis-Hochschule, School of Technology and Engineering, 12489 Berlin, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany; (V.G.A.); (V.D.); (A.S.); (I.M.); (P.E.)
- Institute for Nutritional and Food Sciences, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
3
|
Röder M, Wiacek C, Lankamp F, Kreyer J, Weber W, Ueberham E. Improved Sensitivity of Allergen Detection by Immunoaffinity LC-MS/MS Using Ovalbumin as a Case Study. Foods 2021; 10:foods10122932. [PMID: 34945483 PMCID: PMC8700968 DOI: 10.3390/foods10122932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Food allergies are caused by severe hypersensitivity to specific food allergens such as the egg protein ovalbumin. It is therefore important to test food products for the presence of allergens to protect allergic people from accidental ingestion. For egg detection, ELISA is the only reasonable commercially available test format, although the recognition of target allergens can be affected by food processing, which may lead to false negative results. Current mass spectrometry-based detection methods may overcome this issue, but these approaches are often less sensitive. Here we combined the advantages of antibody-based and MS-based methods by developing an immunoaffinity LC-MS/MS technique to detect the common egg allergen Gal d 2. We investigated the principal functionality of this method with incurred cookie material containing whole egg powder. We found that the new method matched easily the sensitivity of egg specific ELISA tests. Further western blot experiments indicated that this strategy may be unaffected by food processing, providing an important alternative strategy for the detection and quantification of allergens in food.
Collapse
Affiliation(s)
- Martin Röder
- ifp Institut für Produktqualität GmbH, Wagner-Régeny-Str. 8, 12489 Berlin, Germany; (M.R.); (F.L.); (W.W.)
| | - Claudia Wiacek
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany; (C.W.); (J.K.)
| | - Frauke Lankamp
- ifp Institut für Produktqualität GmbH, Wagner-Régeny-Str. 8, 12489 Berlin, Germany; (M.R.); (F.L.); (W.W.)
| | - Jonathan Kreyer
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany; (C.W.); (J.K.)
| | - Wolfgang Weber
- ifp Institut für Produktqualität GmbH, Wagner-Régeny-Str. 8, 12489 Berlin, Germany; (M.R.); (F.L.); (W.W.)
| | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|