1
|
Mishra P, Ahsan F, Mahmood T, Bano S, Shamim A, Ansari VA, Yadav J. Arbutin-A Hydroquinone Glycoside: Journey from Food Supplement to Cutting-Edge Medicine. Chin J Integr Med 2025:10.1007/s11655-025-3827-8. [PMID: 40080250 DOI: 10.1007/s11655-025-3827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 03/15/2025]
Affiliation(s)
- Pooja Mishra
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Jyoti Yadav
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
2
|
Xu Y, Zhang T, Mu S, Peng Y, Wu D, Yang L, Li Q, Wu Z, Zhang J. Discovery of Arbutin as Novel Potential Antiviral Agent Against Tomato Yellow Leaf Curl Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3967-3976. [PMID: 39918282 DOI: 10.1021/acs.jafc.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a major plant virus, infects multiple plant species, severely threatening global food security. Arbutin, a natural product used in cosmetics to reduce pigmentation, also exhibits antibacterial and anti-inflammatory properties. However, its potential in plant protection remains undocumented. This study reveals arbutin's ability to inhibit TYLCV infection. In Nicotiana benthamiana, 100 μg/mL arbutin inhibited viral gene accumulation by up to 76.8%, surpassing ningnanmycin (65.8%) and ribavirin (39.5%). Besides, microscale thermophoresis indicated that arbutin bound strongly to the TYLCV coat protein (CP). Molecular docking indicated that arbutin interacted with ARG58, VAL65, and CYS69. RT-qPCR and Western blot experiments confirmed the crucial roles of these amino acids, especially VAL65, in viral infection. Transcriptome analysis revealed that mutating VAL65 affected plant-pathogen interaction pathways and MAPK signaling in host defense mechanisms. This study unveils arbutin's novel antiviral function, providing crucial insights for developing new biopesticides against plant viruses.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingting Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shimei Mu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yanqun Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Duanpu Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qing Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Xu HX, Li XF, Zhao GL. Comparative Proteomic Analysis Reveals the Effect Mechanisms of Glucose on the Biomass and Phenolic Glycoside Esters Synthesis Activity of Candida Parapsilosis ACCC 20221 Whole-Cell Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20140-20152. [PMID: 39198143 DOI: 10.1021/acs.jafc.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
A new Candida parapsilosis ACCC 20221 (C. parapsilosis ACCC 20221) whole-cell catalyst with a high phenolic glycoside esters synthesis activity and large biomass was obtained after culture with glucose. The possible mechanisms were revealed by using comparative proteomics. It found the expression of proteins involved in post-translational modification, protein turnover, and chaperone, and RNA processing and modification was upregulated, which ensured the metabolic balance and accurate translation, correct folding, and post-translational modification of proteins, thus enhancing the production of lipases in C. parapsilosis ACCC 20221 cultured with glucose. Moreover, the glycolysis pathway, tricarboxylic acid cycle, and fatty acids synthesis were enhanced, while the β-oxidation of fatty acids was weakened in C. parapsilosis ACCC 20221 cells cultured with glucose, which led to an increase in energy generation and cell membrane synthesis; thus, large biomass was obtained. In addition, CCE40476.1 and CAC86400.1, which were likely to exert arbutin esters synthesis activity in C. parapsilosis ACCC 20221, were screened, and it was found that vinyl propionate could easily enter the catalytic pocket of CCE40476.1 and form hydrogen bonding interactions with Leu191 and Ser266.
Collapse
Affiliation(s)
- Hai-Xia Xu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiao-Feng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Guang-Lei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Temel Y. Effects of Arbutin on Potassium Bromate-Induced Erythrocyte Toxicity in Rats: Biochemical Evaluation of Some Metabolic Enzyme Activities In Vivo and In Vitro. ACS OMEGA 2023; 8:36581-36587. [PMID: 37810665 PMCID: PMC10552105 DOI: 10.1021/acsomega.3c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
In the present study, the inhibitory effect of potassium bromate on the pentose phosphate pathway and intracellular antioxidant systems enzymes (glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione S-transferase (GST), and thioredoxin reductase (TrxR)) and the role of arbutin in ameliorating this inhibition were investigated. In the in vivo phase of the study, Wistar Albino rats (28 male adults) were randomly divided into four groups. Control (n = 7): isotonic serum (0.5 mL, i.p), potassium bromate group (n = 7): potassium bromate (100 mg/kg), arbutin group (n = 7): arbutin (i.p.) (50 mg/kg/day), potassium bromate + arbutin, and Group (n = 7): potassium bromate (100 mg/kg) + arbutin (50 mg/kg/day) (i.p). The results of in vivo study showed that the activities of G6PD, 6PGD, GR, and TrxR enzymes were strongly inhibited in potassium bromate groups (p < 0.05). It was determined that GST enzyme activity decreased in the potassium bromate group, but this decrease was not statistically significant compared to the control group (p ⩾ 0.05). A statistically significant increase was found in G6PD, 6PGD, GST, and TrxR enzyme activities in the arbutin group compared to the control group (p < 0.05). The increase in GR enzyme activity was not statistically significant (p ⩾ 0.05). The potassium bromate + arbutin group's enzyme activity increased in comparison to the potassium bromate group and was discovered to be closer to the control group. It was found that potassium bromate inhibited the 6PGD enzyme obtained from rat erythrocyte tissues with IC50 = 346 μM value and Ki = 434.4 μM ± 6.1 value, and the inhibition was noncompetitive.
Collapse
Affiliation(s)
- Yusuf Temel
- Solhan
Health Services Vocational School, Bingöl
University, Bingöl12000, Turkey
- Faculty
of Arts and Sciences, Bingol University, Bingol12000, Turkiye
| |
Collapse
|
6
|
Kim S, Na GH, Jung HM, Han SH, Han J, Koo YK. Enzyme-treated caviar extract ameliorates melanogenesis in UVB-induced SKH-1 hairless mice. Biochem Biophys Res Commun 2023; 673:81-86. [PMID: 37364389 DOI: 10.1016/j.bbrc.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
This study investigated anti-melanogenesis effects of enzyme-treated caviar extract (CV) in murine melanoma B16F10 cells and SKH-1 hairless mice. To induce melanin production in vitro and in vivo studies, B16F10 cells were treated with 3-Isobutyl-1-methylxanthine (IBMX), and SKH-1 hairless mice were irradiated with UVB, respectively. The expression of melnogenesis-related factors and signaling molecules were analyzed by ELISA and western blotting. 50, 100 and 200 μg/mL of CV significantly decreased the melanin contents and the activities of tyrosinase, nitric oxide, glutathione, and cAMP, melanogenesis factor, in B16F10 cells treated IBMX. In addition, CV significantly suppressed the expression of melanogenesis proteins such as pPKA, pCREB, MITF, TRP-1and TRP-2. Similarly, results of oral administration of CV (20, 50 and 100 mg/kg) for 8 weeks in UVB-Induced SKH-1 hairless mice, the expression of melanogenesis-related factor tyrosinase, nitric oxide, and cAMP and protein expression of pPKA, pCREBa, MITF, TRP-1and TRP-2 was significantly reduced. In particular, 100 mg/kg of CV exhibited an excellent effect similar to control group. Therefore, we suggest the possibility of developing CV as a food supplement having skin whitening effects by ameliorating melanogenesis.
Collapse
Affiliation(s)
- SukJin Kim
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Gwi Hwan Na
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Hyun Mook Jung
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Sang Hun Han
- Almas Caviar, Hwaseoung-si, 18553, Republic of Korea
| | - Jehee Han
- Almas Caviar, Hwaseoung-si, 18553, Republic of Korea
| | - Yean Kyoung Koo
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea.
| |
Collapse
|
7
|
Chi G, Shuai D, Li J, Chen X, Yang H, Zhao M, Jiang Z, Wang L, Chen B. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates. NANOSCALE 2023; 15:14543-14550. [PMID: 37609952 DOI: 10.1039/d3nr02303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abnormal melanin overproduction can result in hyperpigmentation syndrome in human skin diseases and enzymatic browning of fruits and vegetables. Recently, our group found that Keggin-type polyoxometalates (POMs) can efficiently inhibit tyrosinase activity. However, it remains unclear whether Keggin-type POMs exhibit optimal effects in vivo. Additionally, the inhibitory effect and mechanism of action of POMs on cellular tyrosinase activity and melanogenesis have been rarely reported. Here we demonstrate that our screened and synthesised PMo11Zn and GaMo12 show superior inhibitory effects on melanin formation as well as inhibition of cellular tyrosinase activity compared to other Keggin-type POMs. Intriguingly, we reveal that Keggin-type POMs competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue is capable of forming van der Waals, cation-π and hydrogen bonds, resulting in a reversible non-covalent complex formation. Our findings provide valuable insights into the design, synthesis and screening of polyoxometalates as multifunctional metallodrugs and food preservatives against hyperpigmentation.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Die Shuai
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xiangsong Chen
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Han Yang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Meijuan Zhao
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Zedong Jiang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Li Wang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Bingnian Chen
- Xiang'an Hospital of Xiamen University, Xiamen 361021, PR China.
| |
Collapse
|
8
|
Yan C, Xing M, Zhang S, Gao Y. Clinical Development and Evaluation of a Multi-Component Dissolving Microneedle Patch for Skin Pigmentation Disorders. Polymers (Basel) 2023; 15:3296. [PMID: 37571190 PMCID: PMC10422440 DOI: 10.3390/polym15153296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Excessive melanin deposition in the skin leads to various skin pigmentation diseases, such as chloasma and age spots. The deposition is induced by several factors, including tyrosinase activities and ultraviolet-induced oxidative stress. Herein, we propose a multi-component, multi-pathway drug combination, with glabridin, 3-O-ethyl-L-ascorbic acid, and tranexamic acid employed as, respectively, a tyrosinase inhibitor, an antioxidant, and a melanin transmission inhibitor. Considering the poor skin permeability associated with topical application, dissolving microneedles (MNs) prepared with hyaluronic acid/poly(vinyl alcohol)/poly(vinylpyrrolidone) were developed to load the drug combination. The drug-loaded microneedles (DMNs) presented outstanding skin insertion, dissolution, and drug delivery properties. In vitro experiments confirmed that DMNs loaded with active ingredients had significant antioxidant and inhibitory effects on tyrosinase activity. Furthermore, the production of melanin both in melanoma cells (B16-F10) and in zebrafish was directly reduced after using DMNs. Clinical studies demonstrated the DMNs' safety and showed that they have the ability to effectively reduce chloasma and age spots. This study indicated that a complex DMN based on a multifunctional combination is a valuable depigmentation product worthy of clinical application.
Collapse
Affiliation(s)
- Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
9
|
Zhang DD, Zhao P, Huang SW, Song SJ, Huang XX. Four pair of enantiomeric benzofuran lignans from the fruits of Crataegus pinnatifida bunge. Nat Prod Res 2023; 37:1349-1355. [PMID: 34822252 DOI: 10.1080/14786419.2021.2007094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytochemical investigation of the fruits of Crataegus pinnatifida Bunge led to the isolation of four pairs enantiomeric benzofuran lignans (1a/1b-4a/4b) including four undescribed compounds (1a, 2b, 3b and 4b). Their structures were determined by extensive spectroscopic methods and the absolute configurations were further determined by the comparison of experimental and calculated ECD spectra. All the enantiomeric lignans were evaluated for their inhibitory activities to tyrosinase. Among them, compound 4a showed moderate inhibition activity (IC50 = 0.54 mM).
Collapse
Affiliation(s)
- Ding-Ding Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shun-Wang Huang
- Hefei Innovative Pharmaceutical Technology Co., Ltd, Hefei, Anhui, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Wang W, Yang L, Wang W, Zhang J, Engelhardt UH, Jiang H. Inhibitory Activities of Samples on Tyrosinases Were Affected by Enzyme Species and Sample Addition Methods. Int J Mol Sci 2023; 24:ijms24076013. [PMID: 37046986 PMCID: PMC10093845 DOI: 10.3390/ijms24076013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The inhibition of tyrosinase (TYR) activity is an effective measure to inhibit melanin synthesis. At present, there are many methods with discrepant details that study the TYR inhibitory activity of samples. Under the same experimental conditions, this paper systematically studies whether enzyme species and sample addition methods are the key factors that determine the TYR inhibitory activity of samples. TYRs extracted from B16F10 cells, apple and mushroom, called BTYR, ATYR and MTYR, respectively, were selected to implement this study. Results showed that TYR inhibitory activities of samples were obviously affected by the above two factors. It was necessary to select the appropriate enzyme according to the problems to be explained. It was speculated that indirectly inhibitory activity reflected the comprehensive effects of samples on TYR catalytic activity and intracellular TYR synthesis pathway, while directly inhibitory activity reflected the effects of samples on TYR catalytic activity. Additionally, kojic acid could be used as a positive control for both B16F10 cells and MTYR models. The TYR inhibitory activity of β-arbutin was complicated and fickle, while that of epigallocatechin gallate (EGCG) was universal and stable, which is to say, EGCG always inhibited TYR activity in a dose-dependent manner. In conclusion, the TYR inhibitory activities of samples were affected by enzyme species and sample addition methods. Compared with the unstable β-arbutin, EGCG was more valuable for clinical research.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijuan Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Weiwei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Jianyong Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Ulrich H Engelhardt
- Institute of Food Chemistry, Technischen Universität Braunschweig, Schleinitzstr. 20, 38106 Braunschweig, Germany
| | - Heyuan Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| |
Collapse
|
11
|
Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z, Zhang L, Miao X. Dual Antimelanogenic Effect of Nicotinamide-Stabilized Phloretin Nanocrystals in Larval Zebrafish. Pharmaceutics 2022; 14:1825. [PMID: 36145574 PMCID: PMC9502130 DOI: 10.3390/pharmaceutics14091825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Collapse
Affiliation(s)
- Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yilan Chen
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhiyuan He
- Marine College, Shandong University, Weihai 264209, China
| | - Zhongrui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
12
|
Kojic Acid Showed Consistent Inhibitory Activity on Tyrosinase from Mushroom and in Cultured B16F10 Cells Compared with Arbutins. Antioxidants (Basel) 2022; 11:antiox11030502. [PMID: 35326152 PMCID: PMC8944748 DOI: 10.3390/antiox11030502] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid, β-arbutin, α-arbutin, and deoxyarbutin have been reported as tyrosinase inhibitors in many articles, but some contradictions exist in their differing results. In order to provide some explanations for these contradictions and to find the most suitable compound as a positive control for screening potential tyrosinase inhibitors, the activity and inhibition type of the aforementioned compounds on monophenolase and diphenolase of mushroom tyrosinase (MTYR) were studied. Their effects on B16F10 cells melanin content, tyrosinase (BTYR) activity, and cell viability were also exposed. Results indicated that α-arbutin competitively inhibited monophenolase activity, whereas they uncompetitively activated diphenolase activity of MTYR. β-arbutin noncompetitively and competitively inhibited monophenolase activity at high molarity (4000 µM) and moderate molarity (250–1000 µM) respectively, whereas it activated the diphenolase activity of MTYR. Deoxyarbutin competitively inhibited diphenolase activity, but could not inhibit monophenolase activity and only extended the lag time. Kojic acid competitively inhibited monophenolase activity and competitive–noncompetitive mixed-type inhibited diphenolase activity of MTYR. In a cellular experiment, deoxyarbutin effectively inhibited BTYR activity and reduced melanin content, but it also potently decreased cell viability. α-arbutin and β-arbutin dose-dependently inhibited BTYR activity, reduced melanin content, and increased cell viability. Kojic acid did not affect cell viability at 43.8–700 µM, but inhibited BTYR activity and reduced melanin content in a dose-dependent manner. Therefore, kojic acid was considered as the most suitable positive control among these four compounds, because it could inhibit both monophenolase and diphenolase activity of MTYR and reduce intercellular melanin content by inhibiting BTYR activity without cytotoxicity. Some explanations for the contradictions in the reported articles were provided.
Collapse
|
13
|
A pair of homoisoflavonoid analogues (6-aldehydo-isoophiopogonanone A/6-aldehydo-isoophiopogonanone B) from Ophiopogon japonicus as a tyrosinase inhibitor: inhibitory activity, conformational change and mechanism. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03902-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Xu H, Li X, Xin X, Mo L, Zou Y, Zhao G. Efficient Enzymatic Synthesis of Lipophilic Phenolic Glycoside Azelaic Acid Esters and Their Depigmenting Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13102-13112. [PMID: 34705451 DOI: 10.1021/acs.jafc.1c03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, an enzymatic route for synthesizing phenolic glycoside azelaic acid esters was successfully set up via lipase-catalyzed esterification and transesterification. Among the lipases tested, Candida antarctica lipase B (Novozyme 435) showed the highest activity in catalyzing esterification and Thermomyces lanuginosus (Lipozyme TLIM) gave the highest substrate conversion in catalyzing transesterification for the synthesis of ester. The addition of 4A molecular sieves into the reaction system is found to be an effective method for in situ absorption of the byproduct water and methanol, with which the substrate conversions of the enzymatic esterification and transesterification were 98.7 and 95.1%, respectively. Also, the main product ratios in transesterification were above 99.0% with lipozyme TLIM as a catalyst because the hydrolysis reaction was hindered. The results of the physical and biological properties indicate that all esters had higher Clog p values than their parent compounds. Also, the esters showed higher intracellular tyrosinase inhibitory and depigmentating activities than phenolic glycosides, azelaic acid (AA), and their physical mixtures due to their higher membrane penetration and tyrosinase inhibitory effects. In particular, piceid 6″-O-azelaic acid ester (PIA) showed the strongest inhibitory effect against melanin production. Its inhibitory rate was 77.4% at a concentration of 0.25 mM, about 4.2 times higher than that of arbutin (18.5%).
Collapse
Affiliation(s)
- Haixia Xu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xuan Xin
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Lan Mo
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yucong Zou
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|