1
|
He C, Zhang H, Chen X, Diao R, Sun J, Mao X. Novel reaction systems for catalytic synthesis of structured phospholipids. Appl Microbiol Biotechnol 2024; 108:1. [PMID: 38153551 DOI: 10.1007/s00253-023-12913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 12/29/2023]
Abstract
Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.
Collapse
Affiliation(s)
- Chenxi He
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Xi Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Rujing Diao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Li Z, Liu J, Fang Y, Chen H, Yang B, Wang Y. An efficient and high-water-content enzymatic esterification method for the synthesis of β-sitosterol conjugated linoleate via a sodium citrate-based three-liquid-phase system. Food Chem 2024; 458:140250. [PMID: 38964114 DOI: 10.1016/j.foodchem.2024.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Three-liquid-phase systems (TLPSs) are novel interfacial enzymatic reaction systems that have been successfully applied in many valuable reactions. However, these systems are suitable only for hydrolysis reactions and not for more widely used esterification reactions. Surprisingly, our recent research revealed that two water-insoluble substrates (β-sitosterol and conjugated linoleic acid) could be rapidly esterified in this system. The initial rate of the esterification reaction in the TLPS based on sodium citrate was enhanced by approximately 10-fold relative to that in a traditional water/n-hexane system. The special emulsion structure (S/W1/W2 emulsion) formed may be vital because it not only provides a larger reaction interface but also spontaneously generates a middle phase that might regulate water activity to facilitate esterification. Furthermore, the lipase-enriched phase could be reused at least 8 times without significant loss of catalytic efficiency. Therefore, this TLPS is an ideal enzymatic esterification platform for ester synthesis because it is efficient, convenient to use, and cost-effective.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiaqin Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yonghua Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Zhan YF, Meng ZH, Yan CH, Tan M, Khurshid M, Li YJ, Zheng SJ, Wang J. A novel cascade catalysis for one-pot enzymatically modified isoquercitrin (EMIQ) conversion from rutin and sucrose using rationally designed gradient temperature control. Food Chem 2024; 457:140163. [PMID: 38924912 DOI: 10.1016/j.foodchem.2024.140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Collapse
Affiliation(s)
- Yu-Fan Zhan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhuo-Hao Meng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Cheng-Hai Yan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Min Tan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Jiangcheng Li
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Shao-Jun Zheng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
4
|
Lu T, Qian Y, Zhu Y, Ju X, Dai W, Xu Q, Yang Q, Li S, Yuan B, Huang J. Efficient Expression and Application of a Modified Rhizomucor miehei Lipase for Simultaneous Production of Biodiesel and Eicosapentaenoic Acid Ethyl Ester from Nannochloropsis Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028993 DOI: 10.1021/acs.jafc.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.
Collapse
Affiliation(s)
- Tong Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yifan Qian
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - YuQing Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Weiwei Dai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Quanbin Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qianqian Yang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Shuting Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Jinjin Huang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
5
|
Nie G, Wei D, Ding Z, Ge L, Guo R. Controllable enzymatic hydrolysis in reverse Janus emulsion microreactors. J Colloid Interface Sci 2024; 663:591-600. [PMID: 38428116 DOI: 10.1016/j.jcis.2024.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
HYPOTHESIS The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.
Collapse
Affiliation(s)
- Guangju Nie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ziyu Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
6
|
Ding S, Chen X, Ouyang B, Yang B, Wang W, Wang Y. Exploring Diacylglycerol Oil-Based Oleogels as Effective Stabilizers in Peanut Butter: Performance, Structural Insights, and Sensory Evaluation. J Oleo Sci 2024; 73:135-145. [PMID: 38311404 DOI: 10.5650/jos.ess23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.
Collapse
Affiliation(s)
- Siliang Ding
- College of Bioscience and Bioengineering, South China University of Technology
| | - Xiaohan Chen
- College of Food Science and Technology, South China University of Technology
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
| | - Bo Yang
- College of Bioscience and Bioengineering, South China University of Technology
| | - Weifei Wang
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences
| | - Yonghua Wang
- College of Food Science and Technology, South China University of Technology
- Guangdong Yue-shan Special Nutrition Technology Co., Ltd
| |
Collapse
|
7
|
Tomaino E, Capecchi E, Piccinino D, Saladino R. Lignin nanoparticles support lipase‐tyrosinase enzymatic cascade in the synthesis of lipophilic hydroxytyrosol ester derivatives. ChemCatChem 2022. [DOI: 10.1002/cctc.202200380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elisabetta Tomaino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S.C De Lellis s.n.c. 01100 Viterbo ITALY
| | - Eliana Capecchi
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S.C. De Lellis s.n.c. 01100 Viterbo ITALY
| | - Davide Piccinino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences 01100 Viterbo ITALY
| | - Raffaele Saladino
- University of Tuscia: Universita degli Studi della Tuscia Department of Biological and Ecological Sciences Via S. Camillo de Lellis 00100 Viterbo ITALY
| |
Collapse
|