1
|
Dai D, Wang X, Wu K, Lan F, Jin J, Zhang W, Wen C, Li J, Yang N, Sun C. Proteomic and N-glycosylation analysis of fertile egg white during storage and incubation in chickens. Poult Sci 2025; 104:104526. [PMID: 39608286 PMCID: PMC11635699 DOI: 10.1016/j.psj.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Proteins in egg whites play vital roles in embryonic development. Simultaneously, protein modification is affected by the surrounding environment, which ultimately affects the structure and function of proteins. Here, we measured the phenotypes of eggs at different time points during storage and incubation and used 4D label-free quantitative proteomics technology and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-technique to identify the differential proteins and N-glycosylation sites in egg whites during storage and incubation. We found that the differential N-glycoproteins in the early stage of storage were mainly related to protein structure changes, antibacterial activity, and cell proliferation, and that there were more protease inhibitors in egg whites, which decreased in the later stage of storage. Finally, eleven possible protein markers and N-glycosylation sites were identified to significantly change during storage and may exert an effect on hatchability, including the proteins involved in antibacterial activity (OVOA-N855, CLU-N154, ogchi-N82, PIGR-N290, WFDC2-N120), protein structure (LOC776816), and cell proliferation (ASAH1-N173). This study provides substantial insights into the physical and molecular compositional changes in egg whites under different storage times and revealed their potential effect on chick embryo development.
Collapse
Affiliation(s)
- Daqing Dai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Kexin Wu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Hu G, Liu X, Wu D, Wang B, Wang J, Geng F. Quantitative N-glycoproteomic analysis of egg yolk powder during thermal processing. Food Res Int 2023; 174:113678. [PMID: 37981370 DOI: 10.1016/j.foodres.2023.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The production of egg yolk powder often involves critical processes such as pasteurization and spray drying, however, these thermal processes will inevitably affect the functional properties of egg yolk (especially gelation and emulsification). The aim of this study was to elucidate the mechanism of the effect of pasteurized egg yolk (P-EY) and spray-dried egg yolk (SD-EY) on the functional properties through quantitative N-glycoproteomic. The results showed, compared with fresh egg yolk (F-EY), emulsifying property of mild heat-treated P-EY was slightly reduced while the gelation property did not undergo significant changes, whereas emulsifying activity (EAI) and gelation strength of vigorously heat-treated SD-EY were significantly reduced by 48.72 % and 35.73 %, respectively. During thermal processing in SD-EY, larger aggregate particles (particle size ∼10 um) were formed, and the surface hydrophobicity was reduced (93.0 %) and the zeta potential was enhanced (62.8 %). The results of quantitative N-glycoproteomic showed that 13 N-glycosylated proteins (APOB, vitellogenin, etc.) were down-regulated while only 2 N-glycosylated proteins were up-regulated; 21 N-glycosylation sites were down-regulated and 2 N-glycosylation sites were up-regulated in SD-EY, suggesting that covalent cross-linking of protein N-glycoproteins may have occurred in the process of spray-drying, which altered molecular physicochemical characteristics of the yolk solution that further affecting the processing properties of egg yolk.
Collapse
Affiliation(s)
- Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xialei Liu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
3
|
Zeng L, Shi X, Xuan L, Zheng J. Comparative N-Glycoproteomic Investigation of Eggshell Cuticle and Mineralized Layer Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390300 DOI: 10.1021/acs.jafc.3c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The eggshell cuticle layer (ECL) and eggshell mineralized layer (EML) contain amounts of glycoproteins and proteoglycans. However, there were few comprehensive reports about the effect of post-translational modifications on protein structure and function which requires investigation. Therefore, we used comparative N-glycoproteomics to study glycoproteins in the ECL and EML. We identified a total of 272 glycoproteins in this experiment and found that glycoproteins located in EML were more than that in ECL. Moreover, they showed distinct functional difference between both layers. As N-glycosylation of ovocleidin-17 and ovocleidin-116 in the EML affected eggshell mineralization, some glycoproteins located in ECL, like ovotransferrin and ovostatin-like, possessed antibacterial activity. The several regulated glycoproteins in the EML may pertain to the regulation of mineralization, while glycosylated proteins in the ECL may contribute to molecular adhesion and defense against microbial invasion. This study provides new insights into the eggshell matrix protein contents of the ECL and EML.
Collapse
Affiliation(s)
- Lingsen Zeng
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lin Xuan
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Meng Y, Qiu N, Guyonnet V, Mine Y. Unveiling and application of the chicken egg proteome: An overview on a two-decade achievement. Food Chem 2022; 393:133403. [PMID: 35689922 DOI: 10.1016/j.foodchem.2022.133403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Egg proteins are not only the most complete and ideal form of protein for human or embryo nutrition but also play the vital role in the food industry. Egg proteins are subjected to many potential changes under various conditions, which may further alter the nutritional value, physicochemical-properties, and bioactivities of proteins. Recent advances in our understanding of the proteome of raw egg matrix from different species and dynamic changes occurring during storage and incubation are developing rapidly. This review provides a comprehensive overview of the main characteristics of chicken egg proteome, covering all its components and applications under various conditions, such as markers detection, egg quality evaluation, genetic and biological unknown identification, and embryonic nutritional supplementation, which not only contributes to our in-depth understanding of each constituent functionality of proteome, but also provides information to increase the value to egg industry.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Vincent Guyonnet
- FFI Consulting Ltd, 2488 Lyn Road, Brockville, ON K6V 5T3, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Comprehensive identification and hydrophobic analysis of key proteins affecting foam capacity and stability during the evolution of egg white foam. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|