1
|
Yuan S, Xu C, Jin M, Jiang X, Liu W, Xian M, Jin P. Stress-driven dynamic regulation of multiple genes to reduce accumulation of toxic aldehydes. Metab Eng 2025; 90:129-140. [PMID: 40086616 DOI: 10.1016/j.ymben.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Aldehydes are ubiquitous metabolites in living cells. As reactive electrophiles, they have the capacity to form adducts with cellular protein thiols and amines, leading to potential toxicity. Dynamic regulation has proven to be an effective strategy for addressing the accumulation of toxic metabolites. However, there are limited reports on applying dynamic control specifically to mitigate aldehyde accumulation. In this study, the cinnamaldehyde accumulation in the biosynthesis of cinnamylamine was used as a model to evaluate a two-way dynamic regulation strategy. First, we utilized whole-genome transcript arrays to identify the cinnamaldehyde-responsive promoters: the upregulated promoter P4 and the downregulated promoter Pd. They were then employed as biosensors to dynamically regulate the synthesis and consumption of cinnamaldehyde, mitigating its toxic effects on the host. This strategy successfully reduced cinnamaldehyde accumulation by 50 % and increased the production of cinnamylamine by 2.9 times. This study demonstrated a cinnamaldehyde-induced autoregulatory system that facilitated the conversion of cinnamic acid into cinnamylamine without the need for costly external inducers, presenting a promising and economically viable approach. The strategy also serves as a reference for alleviating the inhibitory effects of other toxic aldehydes on microorganisms. Additionally, the biosensors (Pd and P4) can respond to a range of aldehyde compounds, offering a rapid and sensitive method for detecting toxic aldehydes in both environmental samples and microorganisms, thus provide a valuable tool for screening strains enhanced aldehyde yield.
Collapse
Affiliation(s)
- Shan Yuan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Guangzhou, 510640, Guangdong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China.
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
2
|
Zhen Z, Xiang L, Li S, Li H, Lei Y, Chen W, Jin JM, Liang C, Tang SY. Designing a whole-cell biosensor applicable for S-adenosyl-l-methionine-dependent methyltransferases. Biosens Bioelectron 2025; 268:116904. [PMID: 39504884 DOI: 10.1016/j.bios.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
This study was undertaken to develop a high-throughput screening strategy using a whole-cell biosensor to enhance methyl-group transfer, a rate-limiting step influenced by intracellular methyl donor availability and methyltransferase efficiency. An l-homocysteine biosensor was designed based on regulatory protein MetR from Escherichia coli, which rapidly reported intracellular l-homocysteine accumulation resulted from S-adenosyl-l-homocysteine (SAH) formation after methyl-group transfer. Using S-adenosyl-l-methionine (SAM) as a methyl donor, this biosensor was applied to caffeic acid 3-O-methyltransferase derived from Arabidopsis thaliana (AtComT). After several rounds of directed evolution, the modified enzyme achieved a 13.8-fold improvement when converting caffeic acid to ferulic acid. The best mutant exhibited a 5.4-fold improvement in catalytic efficiency. Characterization of beneficial mutants showed that improved O-methyltransferase dimerization greatly contributed to enzyme activity. This finding was verified when we switched and compared the N-termini involved in dimerization across different sources. Finally, with tyrosine as a substrate, the evolved AtComT mutant greatly improved ferulic acid biosynthesis, yielding 3448 mg L-1 with a conversion rate of 88.8%. These results have important implications for high-efficiency O-methyltransferase design, which will greatly benefit the biosynthesis of a wide range of natural products. In addition, the l-homocysteine biosensor has the potential for widespread applications in evaluating the efficiency of SAM-based methyl transfer.
Collapse
Affiliation(s)
- Zhen Zhen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - La Xiang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shizhong Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongji Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanyan Lei
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Chen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, 100048, Beijing, China.
| | - Chaoning Liang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Shuang-Yan Tang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
3
|
Su H, Chen S, Chen X, Guo M, Liu H, Sun B. Utilizing a high-throughput visualization screening technology to develop a genetically encoded biosensor for monitoring 5-aminolevulinic acid production in engineered Escherichia coli. Biosens Bioelectron 2025; 267:116806. [PMID: 39353369 DOI: 10.1016/j.bios.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-protein amino acid widely used in agriculture, animal husbandry and medicine. Currently, microbial cell factories are a promising production pathway, but the lack of high-throughput fermentation strain screening tools often hinders the exploration of engineering strategies to increase cell factory yields. Here, mutant AC103-3H was screened from libraries of saturating mutants after response-specific engineering of the transcription factor AsnC of L-asparagine (Asn). Based on mutant AC103-3H, a whole-cell biosensor EAC103-3H with a specific response to 5-ALA was constructed, which has a linear dynamic detection range of 1-12 mM and a detection limit of 0.094 mM, and can be used for in situ screening of potential high-producing 5-ALA strains. With its support, overexpression of the C5 pathway genes using promoter engineering assistance resulted in a 4.78-fold enhancement of 5-ALA production in the engineered E. coli. This study provides an efficient strain screening tool for exploring approaches to improve the 5-ALA productivity of engineered strains.
Collapse
Affiliation(s)
- Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| |
Collapse
|
4
|
Li Z, Sun L, Wang Y, Liu B, Xin F. Construction of a Novel Vanillin-Induced Autoregulating Bidirectional Transport System in a Vanillin-Producing E. coli Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14809-14820. [PMID: 38899780 DOI: 10.1021/acs.jafc.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Vanillin is one of the world's most extensively used flavoring agents with high application value. However, the yield of vanillin biosynthesis remains limited due to the low efficiency of substrate uptake and the inhibitory effect on cell growth caused by vanillin. Here, we screened high-efficiency ferulic acid importer TodX and vanillin exporters PP_0178 and PP_0179 by overexpressing genes encoding candidate transporters in a vanillin-producing engineered Escherichia coli strain VA and further constructed an autoregulatory bidirectional transport system by coexpressing TodX and PP_0178/PP_0179 with a vanillin self-inducible promoter ADH7. Compared with strain VA, strain VA-TodX-PP_0179 can efficiently transport ferulic acid across the cell membrane and convert it to vanillin, which significantly increases the substrate utilization rate efficiency (14.86%) and vanillin titer (51.07%). This study demonstrated that the autoregulatory bidirectional transport system significantly enhances the substrate uptake efficiency while alleviating the vanillin toxicity issue, providing a promising viable route for vanillin biosynthesis.
Collapse
Affiliation(s)
- Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Lina Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Bolin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
5
|
Zhu X, Wu J, Li S, Xiang L, Jin JM, Liang C, Tang SY. Artificial Biosynthetic Pathway for Efficient Synthesis of Vanillin, a Feruloyl-CoA-Derived Natural Product from Eugenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6463-6470. [PMID: 38501643 DOI: 10.1021/acs.jafc.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.
Collapse
Affiliation(s)
- Xiaochong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Wu J, Liang C, Li Y, Zeng Y, Sun X, Jiang P, Chen W, Xiong D, Jin J, Tang S. Engineering and application of LacI mutants with stringent expressions. Microb Biotechnol 2024; 17:e14427. [PMID: 38465475 PMCID: PMC10926051 DOI: 10.1111/1751-7915.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).
Collapse
Affiliation(s)
- Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yufei Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yueting Zeng
- School of Life SciencesHebei UniversityBaodingChina
| | - Xu Sun
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Peixia Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Dandan Xiong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Ming Jin
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Shuang‐Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
8
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
9
|
Liu Y, Sun L, Huo YX, Guo S. Strategies for improving the production of bio-based vanillin. Microb Cell Fact 2023; 22:147. [PMID: 37543600 PMCID: PMC10403864 DOI: 10.1186/s12934-023-02144-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023] Open
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most popular flavors with wide applications in food, fragrance, and pharmaceutical industries. However, the high cost and limited yield of plant extraction failed to meet the vast market demand of natural vanillin. Vanillin biotechnology has emerged as a sustainable and cost-effective alternative to supply vanillin. In this review, we explored recent advances in vanillin biosynthesis and highlighted the potential of vanillin biotechnology. In particular, we addressed key challenges in using microorganisms and provided promising approaches for improving vanillin production with a special focus on chassis development, pathway construction and process optimization. Future directions of vanillin biosynthesis using inexpensive precursors are also thoroughly discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei, 063611, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei, 063611, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
10
|
Zhang X, Cao Y, Liu Y, Lei Y, Zhai R, Chen W, Shi G, Jin JM, Liang C, Tang SY. Designing glucose utilization "highway" for recombinant biosynthesis. Metab Eng 2023; 78:235-247. [PMID: 37394056 DOI: 10.1016/j.ymben.2023.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufeng Cao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Yanyan Lei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixue Zhai
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guizhi Shi
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Zhao W, Wang X, Yang B, Wang Y, Li Z, Bao X. Unravel the regulatory mechanism of Yrr1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:48. [PMID: 36899374 PMCID: PMC10007725 DOI: 10.1186/s12934-023-02056-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Improving the resistance of Saccharomyces cerevisiae to vanillin, derived from lignin, will benefit the design of robust cell factories for lignocellulosic biorefining. The transcription factor Yrr1p mediates S. cerevisiae resistance to various compounds. In this study, eleven predicted phosphorylation sites were mutated, among which 4 mutants of Yrr1p, Y134A/E and T185A/E could improve vanillin resistance. Both dephosphorylated and phosphorylated mutations at Yrr1p 134 and 185 gathered in the nucleus regardless of the presence or absence of vanillin. However, the phosphorylated mutant Yrr1p inhibited target gene expression, while dephosphorylated mutants promoted expression. Transcriptomic analysis showed that the dephosphorylated Yrr1p T185 mutant, under vanillin stress, upregulated ribosome biogenesis and rRNA processing. These results demonstrate the mechanism by which Yrr1p phosphorylation regulates the expression of target genes. The identification of key phosphorylation sites in Yrr1p offers novel targets for the rational construction of Yrr1p mutants to improve resistance to other compounds.
Collapse
Affiliation(s)
- Weiquan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Xinning Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China. .,The Second Hospital of Shandong University, Shandong University Library, Jinan, 250100, China.
| | - Bolun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
12
|
Wang X, Yang B, Zhao W, Cao W, Shen Y, Li Z, Bao X. Capture Hi-C reveals the influence on dynamic three-dimensional chromosome organization perturbed by genetic variation or vanillin stress in Saccharomyces cerevisiae. Front Microbiol 2022; 13:1012377. [DOI: 10.3389/fmicb.2022.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Studying the mechanisms of resistance to vanillin in microorganisms, which is derived from lignin and blocks a major pathway of DNA double-strand break repair in yeast, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. A high vanillin-tolerant Saccharomyces cerevisiae strain EMV-8 carrying site mutations compared to its parent strain NAN-27 was selected for the analyses. The dynamics of the chromatin structure of eukaryotic cells play a critical role in transcription and the regulation of gene expression and thus the phenotype. Consequently, Hi-C and transcriptome analyses were conducted in EMV-8 and NAN-27 in the log phase with or without vanillin stress to determine the effects of mutations and vanillin disturbance on the dynamics of three-dimensional chromosome organization and the influence of the organization on the transcriptome. The outcomes indicated that the chromosome interaction pattern disturbed by vanillin stress or genetic mutations in the log phase was similar to that in mouse cells. The short chromosomes contact the short chromosomes, and the long chromosomes contact the long chromosomes. In response to vanillin stress, the boundaries of the topologically associating domain (TAD) in the vanillin-tolerant strain EMV-8 were more stable than those in its parent strain NAN-27. The motifs of SFL1, STB3, and NHP6A/B were enriched at TAD boundaries in both EMV-8 and NAN-27 with or without vanillin, indicating that these four genes were probably related to TAD formation. The Indel mutation of YRR1, whose absence was confirmed to benefit vanillin tolerance in EMV-8, caused two new interaction sites that contained three genes, WTM2, PUP1, and ALE1, whose overexpression did not affect vanillin resistance in yeast. Overall, our results revealed that in the log phase, genetic mutations and vanillin disturbance have a negligible effect on three-dimensional chromosome organization, and the reformation or disappearance of TAD boundaries did not show an association with gene expression, which provides an example for studying yeast chromatin structure during stress tolerance using Hi-C technology.
Collapse
|