1
|
Li L, Shu L, Li Y, Zhang F, Meng Y, Wang H, Cao Y, Jiang YQ, Yan J. Ectopic Overexpression of Rapeseed BnaNTL1 Transcription Factor Positively Regulates Plant Resistance to Sclerotinia sclerotiorum through Modulating JA Synthesis and ROS Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5042-5053. [PMID: 39979321 DOI: 10.1021/acs.jafc.4c10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Oilseed rape is one of the most important oil crops worldwide. Stem rot disease of rapeseed is caused by Sclerotinia sclerotiorum, posing a threat to oil crop yield. NTL is a small class of membrane-tethered NAC transcription factors, which are stored on the membrane in dormant form, released upon stimuli, and then transported to the nucleus. Here, we identified BnaNTL1 from oilseed rape, and its relocation from the ER to the nucleus is induced by S. sclerotiorum. Plants overexpressing BnaNTL1-ΔTM (a truncated form without the transmembrane domain) are resistant to S. sclerotiorum infection and are accumulated with more JA and ROS. Genes related to the JA pathway and ROS signal were significantly induced by BnaNTL1. Furthermore, the dual-luciferase and EMSA results showed that BnaNTL1-ΔTM directly binds to the promoter regions of AOC3, LOX2, OPCL1, and PDF1.2, and it activates their expression. In summary, we identified that BnaNTL1 positively regulates plant resistance to S. sclerotiorum infection by modulating JA synthesis and ROS production.
Collapse
Affiliation(s)
- Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Fuyan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yan Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
2
|
Duan X, Tian D, Gao P, Sun Y, Peng X, Wen J, Xie H, Wang ZY, Chai M. Transcriptome-Wide Identification of Dark- and Salt-Induced Senescence-Related NAC Gene Family Members in Alfalfa. Int J Mol Sci 2024; 25:8908. [PMID: 39201594 PMCID: PMC11354459 DOI: 10.3390/ijms25168908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence.
Collapse
Affiliation(s)
- Xiangxue Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Daicai Tian
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Peiran Gao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Peng
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Hongli Xie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
4
|
Wang GL, An YH, Zhou CL, Hu ZZ, Ren XQ, Xiong AS. Transcriptome-wide identification of NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors potentially involved in salt stress response in garlic. PeerJ 2022; 10:e14602. [PMID: 36570011 PMCID: PMC9774012 DOI: 10.7717/peerj.14602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cheng-Ling Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhen-Zhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Zhao W, Zhao H, Wang H, He Y. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1044500. [PMID: 36352873 PMCID: PMC9638160 DOI: 10.3389/fpls.2022.1044500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is one of the adaptive mechanisms formed by plants over a long period of evolution. Leaf senescence is accompanied by various changes in cell structure, physiological metabolism, and gene expressions. This process is controlled by a variety of internal and external factors. Meanwhile, the genes and plant hormones involved in leaf aging affect the quality, yield and stress resistance in horticultural plants. Leaf senescence mediated by plant hormones affected plant quality at both pre-harvest and post-harvest stages. Exogenous plant growth regulators or plant hormone inhibitors has been applied to delay leaf senescence. Modification of related gene expression by over-expression or antisense inhibition could delay or accelerate leaf senescence, and thus influence quality. Environmental factors such as light, temperature and water status also trigger or delay leaf senescence. Delaying leaf senescence could increase chloroplast lifespan and photosynthesis and thus improve source strength, leading to enhanced yield. Accelerating leaf senescence promotes nutrient redistribution from old leaves into young leaves, and may raise yield under certain circumstances. Many genes and transcriptional factors involved in leaf senescence are associated with responses to abiotic and biotic stresses. WRKY transcriptional factors play a vital role in this process and they could interact with JA signalling. This review summarized how genes, plant hormones and environmental factors affect the quality, yield. Besides, the regulation of leaf senescence holds great promise to improving the resistance to plant biotic and abiotic stresses.
Collapse
Affiliation(s)
- Wenxue Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Huayuan Zhao
- Bashan Management Area of the Management Committee for Taishan Historic and Scenic Area in Tai’an City, Tai’an, China
| | - Huasen Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| |
Collapse
|
6
|
De Backer J, Van Breusegem F, De Clercq I. Proteolytic Activation of Plant Membrane-Bound Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:927746. [PMID: 35774815 PMCID: PMC9237531 DOI: 10.3389/fpls.2022.927746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/03/2023]
Abstract
Due to the presence of a transmembrane domain, the subcellular mobility plan of membrane-bound or membrane-tethered transcription factors (MB-TFs) differs from that of their cytosolic counterparts. The MB-TFs are mostly locked in (sub)cellular membranes, until they are released by a proteolytic cleavage event or when the transmembrane domain (TMD) is omitted from the transcript due to alternative splicing. Here, we review the current knowledge on the proteolytic activation mechanisms of MB-TFs in plants, with a particular focus on regulated intramembrane proteolysis (RIP), and discuss the analogy with the proteolytic cleavage of MB-TFs in animal systems. We present a comprehensive inventory of all known and predicted MB-TFs in the model plant Arabidopsis thaliana and examine their experimentally determined or anticipated subcellular localizations and membrane topologies. We predict proteolytically activated MB-TFs by the mapping of protease recognition sequences and structural features that facilitate RIP in and around the TMD, based on data from metazoan intramembrane proteases. Finally, the MB-TF functions in plant responses to environmental stresses and in plant development are considered and novel functions for still uncharacterized MB-TFs are forecasted by means of a regulatory network-based approach.
Collapse
Affiliation(s)
- Jonas De Backer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
7
|
Zhang Z, Liu C, Li K, Li X, Xu M, Guo Y. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. MOLECULAR PLANT 2022; 15:179-188. [PMID: 34530165 DOI: 10.1016/j.molp.2021.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that overexpression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H2O2 level, and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal" to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.
Collapse
Affiliation(s)
- Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Kui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Mengmeng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|