1
|
Ma C, Guo Y, Tu T, Cui S, Zhong J, Zhang Y, Song N, Liu H. ELF5 gene promotes milk lipid synthesis in goat mammary epithelial cells by transcriptomic analysis. Genomics 2025; 117:111023. [PMID: 40015575 DOI: 10.1016/j.ygeno.2025.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
E74-like factor 5 (ELF5) is an Ets transcription factor of epithelial development, while the function of ELF5 gene in goat milk fat synthesis remains to be elucidated. In goat mammary epithelial cells, we performed RNA sequencing and analyzed differentially expressed genes (DEGs) after ELF5 gene overexpression. ELF5 gene significantly up-regulated the synthesis of triglyceride, total cholesterol, free fatty acid, and lipid droplets. We obtained 929 DEGs after ELF5 gene overexpression in GMECs. Among the DEGs, SPP1, ELOVL1, PNPLA2, FOXO1, PTGS2, SEMA6A, ACSL5, and GPNMB genes that are related to lipid metabolism were identified. Enrichment analysis showed MAPK and FoxO signaling pathways were up-regulated by ELF5 gene overexpression in GMECs. These findings offer evidence that ELF5 gene could be a candidate gene for the regulation of milk lipid synthesis in goats, and provide molecular targets for the breeding of goats with high milk fat.
Collapse
Affiliation(s)
- Cunxia Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuzhu Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tongtong Tu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuangshuang Cui
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jintao Zhong
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ning Song
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Hongyu Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Malewski T, Kamiński S, Śmiełowski J, Oleński K, Bogdanowicz W. Molecular Diversity of the Casein Gene Cluster in Bovidae: Insights from SNP Microarray Analysis. Animals (Basel) 2024; 14:3034. [PMID: 39457964 PMCID: PMC11505306 DOI: 10.3390/ani14203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The casein gene cluster spans 250 to 350 kb across mammalian species and is flanked by non-coding DNA with largely unknown functions. These regions likely harbor elements regulating the expression of the 4 casein genes. In Bovidae, this cluster is well studied in domestic cattle and to a lesser extent in zebu and water buffalo. This study used a cattle-specific SNP microarray to analyze 12 Bovidae taxa and estimate casein gene cluster variability across 5 bovid subfamilies. Genotyping identified 126 SNPs covering the entire casein gene cluster and 2 Mb of upstream and downstream regions. Dairy cattle, watusi, and zebu showed the highest polymorphism: 63.7-68.2% in the 5'-upstream region, 35.6-40.0% in the casein cluster, and 40.4-89.4% in the 3'-downstream region. Among wild bovids, only a 'semi-aquatic' lechwe revealed high polymorphism similar to cattle. Other species exhibited lower variability, ranging from 9.1-27.3% in the 5'-upstream, 8.9-20.0% in the casein, and 4.2-10.6% in the 3'-downstream regions. For the first time, genome variability data were obtained for impala, waterbuck, and lechwe. It appears that higher variability in cattle's casein gene cluster may relate to its intense expression. This study confirms the effectiveness of cattle-derived microarrays for genotyping Bovidae.
Collapse
Affiliation(s)
- Tadeusz Malewski
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warszawa, Poland;
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-718 Olsztyn, Poland; (S.K.); (K.O.)
| | | | - Kamil Oleński
- Department of Animal Genetics, University of Warmia and Mazury, 10-718 Olsztyn, Poland; (S.K.); (K.O.)
| | - Wiesław Bogdanowicz
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warszawa, Poland;
| |
Collapse
|
3
|
Wang J, Ke N, Wu X, Zhen H, Hu J, Liu X, Li S, Zhao F, Li M, Shi B, Zhao Z, Ren C, Hao Z. MicroRNA-148a Targets DNMT1 and PPARGC1A to Regulate the Viability, Proliferation, and Milk Fat Synthesis of Ovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:8558. [PMID: 39201245 PMCID: PMC11354201 DOI: 10.3390/ijms25168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, the expression profiles of miR-148a were constructed in eight different ovine tissues, including mammary gland tissue, during six different developmental periods. The effect of miR-148a on the viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells (OMECs) was investigated, and the target relationship of miR-148a with two predicted target genes was verified. The expression of miR-148a exhibited obvious tissue-specific and temporal-specific patterns. miR-148a was expressed in all eight ovine tissues investigated, with the highest expression level in mammary gland tissue (p < 0.05). Additionally, miR-148a was expressed in ovine mammary gland tissue during each of the six developmental periods studied, with its highest level at peak lactation (p < 0.05). The overexpression of miR-148a increased the viability of OMECs, the number and percentage of Edu-labeled positive OMECs, and the expression levels of two cell-proliferation marker genes. miR-148a also increased the percentage of OMECs in the S phase. In contrast, transfection with an miR-148a inhibitor produced the opposite effect compared to the miR-148a mimic. These results indicate that miR-148a promotes the viability and proliferation of OMECs in Small-tailed Han sheep. The miR-148a mimic increased the triglyceride content by 37.78% (p < 0.01) and the expression levels of three milk fat synthesis marker genes in OMECs. However, the miR-148a inhibitor reduced the triglyceride level by 87.11% (p < 0.01). These results suggest that miR-148a promotes milk fat synthesis in OMECs. The dual-luciferase reporter assay showed that miR-148a reduced the luciferase activities of DNA methyltransferase 1 (DNMT1) and peroxisome proliferator-activated receptor gamma coactivator 1-A (PPARGC1A) in wild-type vectors, suggesting that they are target genes of miR-148a. The expression of miR-148a was highly negatively correlated with PPARGC1A (r = -0.789, p < 0.001) in ovine mammary gland tissue, while it had a moderate negative correlation with DNMT1 (r = -0.515, p = 0.029). This is the first study to reveal the molecular mechanisms of miR-148a underlying the viability, proliferation, and milk fat synthesis of OMECs in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (N.K.); (X.W.); (H.Z.); (J.H.); (X.L.); (S.L.); (F.Z.); (M.L.); (B.S.); (Z.Z.); (C.R.)
| |
Collapse
|
4
|
Mecocci S, Pietrucci D, Milanesi M, Capomaccio S, Pascucci L, Evangelista C, Basiricò L, Bernabucci U, Chillemi G, Cappelli K. Comparison of colostrum and milk extracellular vesicles small RNA cargo in water buffalo. Sci Rep 2024; 14:17991. [PMID: 39097641 PMCID: PMC11297979 DOI: 10.1038/s41598-024-67249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Recently, much interest has been raised for the characterization of signaling molecules carried by extracellular vesicles (EVs), which are particularly enriched in milk (mEVs). Such interest is linked to the capability of EVs to cross biological barriers, resist acidification in the gastric environment, and exert modulation of the immune system, mainly through their microRNA (miRNA) content. We characterized the small-RNA cargo of colostrum EVs (colosEVs) and mEVs from Italian Mediterranean buffalo through next generation sequencing. Colostrum (first milking after birth) and milk (day 50 of lactation) were sampled from seven subjects from five farms. ColosEVs and mEVs were subjected to morphological characterization, followed by high-depth sequencing of small RNA libraries produced from total RNA. The main difference was the amount of EV in the two samples, with colostrum showing 10 to 100-fold higher content than milk. For both matrices, miRNA was the most abundant RNA species (95% for colosEVs and 96% for mEVs) and three lists were identified: colosEV-specific, mEV-specific and shared most expressed. Gene ontology (GO) enrichment analysis on miRNA targets highlighted many terms related to the epigenetic, transcriptional and translational regulations across the three lists, with a higher number of enriched terms for colosEV-specific miRNAs. Terms specific to colosEVs were related to "cell differentiation" and "microvillus assembly", while for mEV "cardiac and blood vessel development" and "mitochondria" emergerd. Immune modulation terms were found for both sample-specific miRNAs. Overall, both matrices carry a similar molecular message in terms of biological processes potentially modulated into receiving cells, but there is significant difference in the abundance, with colostrum containing much more EVs than milk. Moreover, colosEVs carry molecules involved in signal transduction, cell cycle and immune response, as for mEVs and EVs of other previously characterized species, but with a special enrichment for miRNAs with epigenetic regulation capacities. These beneficial characteristics of colosEVs and mEVs are essential for the calf and could also be exploited for the therapeutic purposes in humans, although further studies are necessary to measure the sanitization treatment impact on EV conservation, especially in buffalo where milk is consumed almost exclusively after processing.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Chiara Evangelista
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Loredana Basiricò
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Umberto Bernabucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, 00133, Rome, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| |
Collapse
|
5
|
Song N, Ma C, Guo Y, Cui S, Chen S, Chen Z, Ling Y, Zhang Y, Liu H. Identifying differentially expressed genes in goat mammary epithelial cells induced by overexpression of SOCS3 gene using RNA sequencing. Front Vet Sci 2024; 11:1392152. [PMID: 38835896 PMCID: PMC11148363 DOI: 10.3389/fvets.2024.1392152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a key signaling molecule that regulates milk synthesis in dairy livestock. However, the molecular mechanism by which SOCS3 regulates lipid synthesis in goat milk remains unclear. This study aimed to screen for key downstream genes associated with lipid synthesis regulated by SOCS3 in goat mammary epithelial cells (GMECs) using RNA sequencing (RNA-seq). Goat SOCS3 overexpression vector (PC-SOCS3) and negative control (PCDNA3.1) were transfected into GMECs. Total RNA from cells after SOCS3 overexpression was used for RNA-seq, followed by differentially expressed gene (DEG) analysis, functional enrichment analysis, and network prediction. SOCS3 overexpression significantly inhibited the synthesis of triacylglycerol, total cholesterol, non-esterified fatty acids, and accumulated lipid droplets. In total, 430 DEGs were identified, including 226 downregulated and 204 upregulated genes, following SOCS3 overexpression. Functional annotation revealed that the DEGs were mainly associated with lipid metabolism, cell proliferation, and apoptosis. We found that the lipid synthesis-related genes, STAT2 and FOXO6, were downregulated. In addition, the proliferation-related genes BCL2, MMP11, and MMP13 were upregulated, and the apoptosis-related gene CD40 was downregulated. In conclusion, six DEGs were identified as key regulators of milk lipid synthesis following SOCS3 overexpression in GMECs. Our results provide new candidate genes and insights into the molecular mechanisms involved in milk lipid synthesis regulated by SOCS3 in goats.
Collapse
Affiliation(s)
- Ning Song
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cunxia Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuzhu Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shuangshuang Cui
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shihao Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Xue Q, Huang Y, Cheng C, Wang Y, Liao F, Duan Q, Wang X, Miao C. Progress in epigenetic regulation of milk synthesis, with particular emphasis on mRNA regulation and DNA methylation. Cell Cycle 2023; 22:1675-1693. [PMID: 37409592 PMCID: PMC10446801 DOI: 10.1080/15384101.2023.2225939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Inadequate milk secretion and a lack of nutrients in humans and mammals are serious problems. It is of great significance to clarify the mechanisms of milk synthesis and treatment methods. Epigenetic modification, represented by RNA methylation, is an important way of gene expression regulation that profoundly affects human gene expression and participates in various physiological and pathological mechanisms. Epigenetic disorders also have an important impact on the production and secretion of milk. This review systematically summarized the research results of epigenetics in the process of lactation in PubMed, Web of Science, NSTL, and other databases and reviewed the effects of epigenetics on human and mammalian lactation, including miRNAs, circRNAs, lncRNAs, DNA methylations, and RNA methylations. The abnormal expression of miRNAs was closely related to the synthesis and secretion of milk fat, milk protein, and other nutrients in the milk of cattle, sheep, and other mammals. MiRNAs are also involved in the synthesis of human milk and the secretion of nutrients. CircRNAs and lncRNAs mainly target miRNAs and regulate the synthesis of nutrients in milk by ceRNA mechanisms. The abnormal expression of DNA and RNA methylation also has an important impact on milk synthesis. Epigenetic modification has the potential to regulate the milk synthesis of breast epithelial cells. Analyzing the mechanisms of human and mammalian milk secretion deficiency and nutrient deficiency from the perspective of epigenetics will provide a new perspective for the treatment of postpartum milk deficiency in pregnant women and mammalian milk secretion deficiency.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Qiangjun Duan
- Department of Experimental (Practical Training) Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Zhu L, Jiao H, Gao W, Huang L, Shi C, Zhang F, Wu J, Luo J. Fatty Acid Desaturation Is Suppressed in Mir-26a/b Knockout Goat Mammary Epithelial Cells by Upregulating INSIG1. Int J Mol Sci 2023; 24:10028. [PMID: 37373175 DOI: 10.3390/ijms241210028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.
Collapse
Affiliation(s)
- Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Hongyun Jiao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chenbo Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Cao X, Ren Y, Lu Q, Wang K, Wu Y, Wang Y, Zhang Y, Cui XS, Yang Z, Chen Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front Nutr 2023; 9:1018336. [PMID: 36712548 PMCID: PMC9875800 DOI: 10.3389/fnut.2022.1018336] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Lactoferrin (Lf), existing widely in human and mammalian milk, is a multifunctional glycoprotein with many functions, such as immune regulation, anti-inflammation, antibacterial, antiviral, and antioxidant. These extensive functions largely attribute to its ability to chelate iron and interfere with the cellular receptors of pathogenic microorganisms and their hosts. Moreover, it is non-toxic and has good compatibility with other supplements. Thus, Lf has been widely used in food nutrition, drug carriers, biotechnology, and feed development. Although Lf has been continuously explored and studied, a more comprehensive and systematic compendium is still required. This review presents the recent advances in the structure and physicochemical properties of Lf as well as clinical studies on human diseases, with the aim of providing a reference for further research of Lf and the development of its related functional products.
Collapse
Affiliation(s)
- Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - YuHao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang-shun Cui
- Department of Animal Science, Laboratory of Animal Developmental Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China,*Correspondence: Zhi Chen,
| |
Collapse
|
9
|
Chen Z, Lu Q, Zhang X, Zhang Z, Cao X, Wang K, Lu X, Yang Z, Loor JJ, Jiao P. Circ007071 Inhibits Unsaturated Fatty Acid Synthesis by Interacting with miR-103-5p to Enhance PPARγ Expression in the Dairy Goat Mammary Gland. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13719-13729. [PMID: 36222227 DOI: 10.1021/acs.jafc.2c06174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding more precisely the mechanisms controlling the metabolism of fatty acid in the mammary gland of dairy goats is essential for future improvements in milk quality. Particularly since recent data have underscored a key role for circular RNAs (circRNAs) in the mammary gland function, high-throughput sequencing technology was used to identify expression levels of circRNAs in the mammary tissue of dairy goats during early and peak lactation in the present study. Compared with early lactation, results demonstrated that the expression level of circ007071 during peak lactation was 12.02-fold up-regulated. Subsequent studies in goat mammary epithelial cells (GMECs) revealed that circ007071 stimulated the synthesis of triglycerides (TAG) and cholesterol, as well as increased the content of saturated fatty acids (C16:0 and C18:0). More importantly, using a double luciferase reporting system allowed us to detect the circ007071 sequence at a binding site of miR-103-5p, indicating that it targeted this miRNA. Overexpression of circ007071 significantly decreased the abundance of miR-103-5p and led to inhibition of TAG synthesis. In contrast, the abundance of peroxisome proliferator-activated receptor γ (PPARγ), a target gene of miR-103-5p, was reinforced with the overexpression of circ007071. Thus, we conclude that one key function of circ007071 in the regulation of milk fat synthesis is to attenuate the inhibitory effect of miR-103-5p on PPARγ via direct interactions with miRNA. As a result, the process of TAG and saturated fatty acid is able to proceed.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
10
|
The effect of kefir fermentation on the protein profile and the monoterpenic bioactive compounds in goat milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Wang J, Hao Z, Hu L, Qiao L, Luo Y, Hu J, Liu X, Li S, Zhao F, Shen J, Li M, Zhao Z. MicroRNA-199a-3p regulates proliferation and milk fat synthesis of ovine mammary epithelial cells by targeting VLDLR. Front Vet Sci 2022; 9:948873. [PMID: 35990270 PMCID: PMC9391033 DOI: 10.3389/fvets.2022.948873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
In our previous study, microRNA (miR)-199a-3p was found to be the most upregulated miRNA in mammary gland tissue during the non-lactation period compared with the peak-lactation period. However, there have been no reports describing the function of miR-199a-3p in ovine mammary epithelial cells (OMECs) and the biological mechanisms by which the miRNA affects cell proliferation and milk fat synthesis in sheep. In this study, the effect of miR-199a-3p on viability, proliferation, and milk fat synthesis of OMECs was investigated, and the target relationship of the miRNA with very low-density lipoprotein receptor (VLDLR) was also verified. Transfection with a miR-199a-3p mimic increased the viability of OMECs and the number of Edu-labeled positive OMECs. In contrast, a miR-199-3p inhibitor had the opposite effect with the miR-199a-3p mimic. The expression levels of three marker genes were also regulated by both the miR-199a-3p mimic and miR-199-3p inhibitor in OMECs. Together, these results suggest that miR-199a-3p promotes the viability and proliferation of OMECs. A dual luciferase assay confirmed that miR-199a-3p can target VLDLR by binding to the 3′-untranslated regions (3'UTR) of the gene. Further studies found a negative correlation in the expression of miR-199a-3p with VLDLR. The miR-199a-3p mimic decreased the content of triglycerides, as well as the expression levels of six milk fat synthesis marker genes in OMECs, namely, lipoprotein lipase gene (LPL), acetyl-CoA carboxylase alpha gene (ACACA), fatty acid binding protein 3 gene (FABP3), CD36, stearoyl-CoA desaturase gene (SCD), and fatty acid synthase gene (FASN). The inhibition of miR-199a-3p increased the level of triglycerides and the expression of LPL, ACACA, FABP3, SCD, and FASN in OMECs. These findings suggest that miR-199a-3p inhibited milk fat synthesis of OMECs. This is the first study to reveal the molecular mechanisms by which miR-199a-3p regulates the proliferation and milk fat synthesis of OMECs in sheep.
Collapse
|
12
|
Zhao Z, Sun X, Liu N, Cheng J, Wang C, Guo M. Comparative analysis of caseins in Saanen goat milk from 3 different regions of China using quantitative proteomics. J Dairy Sci 2022; 105:5587-5599. [DOI: 10.3168/jds.2021-21659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/10/2022] [Indexed: 01/05/2023]
|
13
|
Mutation of Signal Transducer and Activator of Transcription 5 (STAT5) Binding Sites Decreases Milk Allergen α S1-Casein Content in Goat Mammary Epithelial Cells. Foods 2022; 11:foods11030346. [PMID: 35159497 PMCID: PMC8834060 DOI: 10.3390/foods11030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
αS1-Casein (encoded by the CSN1S1 gene) is associated with food allergy more than other milk protein components. Milk allergy caused by αS1-casein is derived from cow milk, goat milk and other ruminant milk. However, little is known about the transcription regulation of αS1-casein synthesis in dairy goats. This study aimed to investigate the regulatory roles of signal transducer and activator of transcription 5 (STAT5) on αS1-casein in goat mammary epithelial cells (GMEC). Deletion analysis showed that the core promoter region of CSN1S1 was located at −110 to −18 bp upstream of transcription start site, which contained two putative STAT5 binding sites (gamma-interferon activation site, GAS). Overexpression of STAT5a gene upregulated the mRNA level and the promoter activity of the CSN1S1 gene, and STAT5 inhibitor decreased phosphorylated STAT5 in the nucleus and CSN1S1 transcription activity. Further, GAS site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays revealed that GAS1 and GAS2 sites in the CSN1S1 promoter core region were binding sites of STAT5. Taken together, STAT5 directly regulates CSN1S1 transcription by GAS1 and GAS2 sites in GMEC, and the mutation of STAT5 binding sites could downregulate CSN1S1 expression and decrease αS1-casein synthesis, which provide the novel strategy for reducing the allergic potential of goat milk and improving milk quality in ruminants.
Collapse
|