1
|
Xiong Y, Liao H, Liao H, Song X, Ma C, Huang Y. Process Optimization and Odor Analysis of Instant Black Tea Powder. Foods 2025; 14:1552. [PMID: 40361634 PMCID: PMC12072007 DOI: 10.3390/foods14091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
This study enhanced the odor retention of instant black tea powder by utilizing ultrasonic-assisted extraction and β-cyclodextrin embedding technology. Through single-factor tests considering variables such as the tea-to-water ratio, extraction temperature, ultrasonic extraction duration, and β-cyclodextrin addition, the optimal extraction conditions were determined. The ideal parameters were identified as follows: β-cyclodextrin was added at a rate of 7.5%, the tea-to-water ratio was 1:16, the ultrasonic extraction temperature was 52 °C, and the extraction duration was 30 min, and then the extract was processed by freeze-drying to obtain instant tea powder. Electronic nose trials revealed that the primary volatile odor compounds distinguishing the 14 groups of instant black tea soups were sulfides, terpenes, nitrogen oxides, alkanes, and aromatic compounds. HS-SPME-GC-MS analysis identified 65 effective volatile compounds, among which 11 key odor compounds, including Benzyl alcohol, Phytol, phenylethyl alcohol, 1,6,10-Dodecatrien-3-ol,3,7,11-trimethyl-,(E)-, Benzeneacetaldehyde, Undecanoic acid, ethyl ester, Dodecanoic acid, ethyl ester, Tetradecane, 2,4-Di-tert-butylphenol, 2-Pentadecanone, 6,10,14-trimethyl-, and indole, were the main contributors to the odor profile of instant black tea. The instant black tea powder produced under these conditions exhibited high quality, providing a valuable reference for further research on the production process of instant black tea powder.
Collapse
Affiliation(s)
- Yuqin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (H.L.); (X.S.)
| | - Haomu Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (H.L.); (X.S.)
| | - Haiyue Liao
- College of Tea and Food Sciences, Wuyi University, Wuyishan 354300, China;
| | - Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (H.L.); (X.S.)
| | - Chunhua Ma
- College of Tea and Food Sciences, Wuyi University, Wuyishan 354300, China;
| | - Yan Huang
- College of Tea and Food Sciences, Wuyi University, Wuyishan 354300, China;
| |
Collapse
|
2
|
Hu Z, Sun W, Guo J, Wang X, Yong L, Ren L, Feng D, Zou X. Establishment and application of a high-performance liquid chromatography-mass spectrometry method for analysis of 15 bisphenols and halogenated phenols in tea. Food Chem 2025; 469:142561. [PMID: 39721436 DOI: 10.1016/j.foodchem.2024.142561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Using high-performance liquid chromatography-mass spectrometry, fifteen bisphenols and halogenated phenols were simultaneously analyzed in tea for the first time in China. Response surface methodology was used to optimize sample preparation conditions based on QuEChERS. Finally, the limits of detection and the limits of quantification were 0.0200-0.173 μg/kg and 0.0892-0.770 μg/kg, respectively. The recoveries were 70 %-120 % for most compounds (except for some compounds at low spiked concentrations) with RSDs <20 %. Then 135 dried tea samples were analyzed. Bisphenol S, A and F were the predominant bisphenol contaminants with detection rates above 80 %, and the median level of bisphenol F (4.90 μg/kg) was even higher than that of bisphenol A (2.74 μg/kg). Bisphenol A (p < 0.001) and bisphenol F (p = 0.007) were significantly higher in black tea than in green tea. Hazard index was estimated and bisphenols in tea may pose potential risks to human health.
Collapse
Affiliation(s)
- Zifan Hu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Weiyang Sun
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Jiaqi Guo
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Lin Ren
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Dejian Feng
- Institute of Biology, National Institute of Measurement and Testing Technology, Chengdu, Sichuan 610021, China
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Zhou J, Qin M, Zhu J, Ntezimana B, Jiang X, Zhang D, Yu Z, Chen Y, Ni D. Analysis of changes in flavor characteristics of congou black tea at different fermentation degrees under industrial production conditions using flavor compound weighted network co-expression method. Food Chem 2025; 468:142241. [PMID: 39689488 DOI: 10.1016/j.foodchem.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
Fermentation is a key process in Congou black tea, but there is limited research on the changes in flavor factors and their interrelationships during different fermentation stages under industrial production. This study applies sensory evaluation and metabolomics techniques to explore the interactions between flavors. Sensory evaluation indicated that the 4-h fermented sample exhibited the best overall performance. The experiment of adding aroma substances further revealed the significant effects of sweet aroma and green odor on taste of sweetness and astringency. Additionally, 532 flavor compounds were identified using high-resolution liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Moreover, significant differences were observed in the volatile compounds derived from flavonoids, amino acids, and fatty acids of samples with different fermentation degrees. Furthermore, weighted co-expression network analysis of flavor compounds showed that the oxidation of polyphenols, especially catechins, plays an important regulatory role in content changes of volatile and other non-volatile compounds during fermentation.
Collapse
Affiliation(s)
- Jingtao Zhou
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China
| | - Muxue Qin
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junyu Zhu
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bernard Ntezimana
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinfeng Jiang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, China
| | - De Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhi Yu
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqiong Chen
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
4
|
Luo Q, He HF. Accumulation of theanine in tea plant (Camellia sinensis (L.) O. Kuntze): Biosynthesis, transportation and strategy for improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112406. [PMID: 39889353 DOI: 10.1016/j.plantsci.2025.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Theanine, specifically biosynthesized and accumulated in Camellia sinensis (L.) O. Kuntze, is widely recognized as the most positive ingredient related to the quality of tea. Therefore, genetic factors related to the biosynthesis of theanine in tea plant, CsAlaDC, CsGGTs and CsMYBs, etc., were elaborated and proved to be influential. Oppositely, TFs acting on the growth and development of tea plants, CsPIF, CsHO as well as CsGDH were demonstrated to be negative for biosynthesis of theanine. Since root is the original assembly site, transportation is indispensable for the accumulation of theanine in leaf. CsAAP7.2 was elucidated to be involved in the transportation of theanine crossing the vascular system to vegetative tissues. In order to promote the accumulation of theanine, strategies were proposed in aspect of processing, cultivation, fertilizer as well as germplasm innovation. Appropriate processing technology, scientific planting manner and fertilizer application, coupling with domestication of excellent varieties portrayed out the future orientation of theanine. Purpose of the review was to summarize advantages achieved in related to metabolism of theanine, and to motivate more intensive and more effective means to promote the accumulation of theanine in tea plant.
Collapse
Affiliation(s)
- Qianting Luo
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Rd., Rizhao, P. R. China.; School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Rd., Jinan 250117, P. R. China
| | - Hua-Feng He
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Rd., Rizhao, P. R. China..
| |
Collapse
|
5
|
Gao X, Kan X, Du F, Sun L, Li X, Liu J, Liu X, Yao D. The Manufacturing Process of Lotus ( Nelumbo Nucifera) Leaf Black Tea and Its Microbial Diversity Analysis. Foods 2025; 14:519. [PMID: 39942112 PMCID: PMC11817234 DOI: 10.3390/foods14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Lotus leaves combine both edible and medicinal properties and are rich in nutrients and bioactive compounds. In this study, the lotus leaf tea was prepared using a black tea fermentation process, and the functional components and microbial changes during fermentation were investigated. The results indicated that the activity of polyphenol oxidase showed an initial rise followed by a decline as fermentation progressed, peaked at 3 h with 1.07 enzyme activity units during fermentation. The lotus leaf fermented tea has high levels of soluble sugars (20.92 ± 0.53 mg/g), total flavonoids (1.59 ± 0.05 mg GAE/g), and total polyphenols (41.34 ± 0.87 mg RE/g). Its antioxidant activity was evaluated using ABTS, DPPH, and hydroxyl radical scavenging assays, with results of 18.90 ± 1.02 mg Vc/g, 47.62 ± 0.51 mg Vc/g, and 17.58 ± 1.06 mg Vc/g, respectively. The microbial community also shifted during fermentation. Fusarium played a significant role during the fermentation process. This study demonstrated that the black tea fermentation process improved the functional components and biological activity of lotus leaf tea by optimizing the synergistic effect of enzymatic oxidation and microbial fermentation. The findings not only realized the comprehensive utilization of lotus leaf resources but also provided a foundation for developing innovative functional beverages with enhanced bioactive properties.
Collapse
Affiliation(s)
- Xiaojing Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xuhui Kan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xixi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| |
Collapse
|
6
|
Liao SY, Yang S, Li BL, Xia X, Jia WB, Zhao YQ, Lin L, Bian JL, Bouphun T, Xu W. Correlation analysis between key volatile compounds and core functional bacterial community during Sichuan black tea processing. Food Chem X 2024; 24:101969. [PMID: 39582654 PMCID: PMC11584953 DOI: 10.1016/j.fochx.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024] Open
Abstract
Microorganisms participate in the transformation of non-volatile compounds during black tea processing, while their effects on aroma remains unclear. In the present study, 132 KVCs (key volatile compounds) were identified in Sichuan black tea (SBT), of which, linalool and p-cymene were responsible for the citrus-like and sweet aroma of SBT. During the processing of SBT, Methylobacterium-Methylorubrum, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pedobacter, Acidovorax, and Sphigomonas were the dominant bacterial genera. PCoA (principal components analysis)and Anoism (analysis of similarities) indicated that the bacterial community undergone subtle changes in various processes. Additionally, Pedobacter and Sphigomonas, core functional bacteria contributing to SBT aroma formation, act mainly by secreting enzymes related to amino acid conversion and glycoside hydrolysis. These enzymes include kynureninase, L-cysteate sulfo-lyase, homoserine dehydrogenase, serine/threonine protein phosphatase 1, and aminotransferase. Overall, these findings provide a deep insight into the potential mechanism of aroma formation under bacterial influence during SBT processing.
Collapse
Affiliation(s)
- Si-yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Yang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin-lin Li
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Xia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Lin
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-lin Bian
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Fan C, Xu Y, Li Y, Yang M, Han J, Pang X. DNA metabarcoding uncovers fungal communities in Zingiberis Rhizoma. CHINESE HERBAL MEDICINES 2024; 16:679-685. [PMID: 39606262 PMCID: PMC11589332 DOI: 10.1016/j.chmed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 11/29/2024] Open
Abstract
Objective Zingiberis Rhizoma (ZR, Ganjiang in Chinese), also known as dried ginger, is a popular spice and medicinal herb that has been used for several thousand years. However, ZR is easily contaminated by fungi and mycotoxin under suitable conditions, and might be hazardous to the health and safety of consumers, thus concerns about the herb's safety have been raised. The aim of this study was to investigate the fungal community and the effects of collection areas and processing methods on the fungal community in ZR. Methods A total of 18 ZR samples were collected from four provinces of China, and the samples were divided into four groups based on collecting sites. Meanwhile, the samples collected in Sichuan Province, China were divided into three groups based on the processing methods. We employed the Illumina MiSeq PE300 platform and targeted the internal transcribed spacer 2 (ITS2) sequences to investigate fungal contamination in ZR samples, and the difference in fungal community among the groups of different collection sites and processing methods. Results All 18 samples were contaminated with fungi. Ascomycota was the dominant phyla, accounting for 34.46%-100% of the fungal reads. At the genus level, Candida, Diutina, and Aspergillus were the most dominant genera, with relative abundances of 0-98.37%, 0-99.82%, and 0-79.08%, respectively. Meanwhile, four potential toxigenic fungi and seven human pathogens were found. Furthermore, differences in the community composition of ZR samples from four collecting sites and three processing methods were observed. Conclusion DNA metabarcoding provides a novel insight into fungal community diversity in ZR samples, providing references to ensure the sustainable utilization and quality research of ZR.
Collapse
Affiliation(s)
- Chune Fan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yanan Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yufeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Lin H, Zhang K, Guo J, Kwadzokpui BA, Adade SYSS, Chen Q. Olfactory analysis of oolong tea sensory quality using composite nano-colorimetric sensor array. Food Res Int 2024; 194:114912. [PMID: 39232533 DOI: 10.1016/j.foodres.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Chinese oolong tea is famous for its rich and diverse aromas, which is an important indicator for sensor quality evaluation. To accurately and rapidly evaluate sensory quality, a novel colorimetric sensor array (CSA) was developed to detect volatile organic compounds (VOCs) in oolong tea. We further explored the binding mechanism between colorimetric dyes that trigger changes in charge transfer and visible color changes. Based on this, we modified and optimized the CSA to improve the sensitivity by 17.1-234.9% and the stability by 8.7-33.3%. The study also assessed the effectiveness of this method by comparing two linear and two non-linear classification models, with the support vector machine (SVM) model achieving the highest accuracy, identifying different flavor intensity and grades with rates of 100% and 95.83%, respectively. These findings sufficiently demonstrated that the novel CSA, integrated with the SVM model, has promising potential for predicting the sensory quality of oolong tea.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Stunt Talent Laboratory, Bamatea Co., Ltd, Quanzhou 362000, PR China.
| | - Kexin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jilong Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Bridget Ama Kwadzokpui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
9
|
Yuan Y, Peng Z, Jiang X, Zhu Q, Chen R, Wang W, Liu A, Wu C, Ma C, Zhang J. Metabolomics analysis of flavor differences in Shuixian (Camellia sinensis) tea from different production regions and their microbial associations. Food Chem 2024; 443:138542. [PMID: 38281414 DOI: 10.1016/j.foodchem.2024.138542] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Shuixian is renowned for its "rock flavor". However, the variations in Shuixian flavor are unclear, as the discussion mainly considers regional factors and overlooks the role of microorganisms. Sensory evaluation of Shuixian from three different regions (Zhengyan, Banyan, and Waishan) revealed that each had unique flavor characteristics: a woody aroma with slight acidity, a strong floral and fruity aroma with good freshness, and a distinct sweet aroma and sourness. Metabolomic analyses have revealed that 2-methylpyrazine was a crucial component of the woody aroma, whereas other metabolites contributed to sweet aroma, freshness, and acidity. Moreover, examinations of the relationship between flavor metabolites and microorganisms revealed that fungi had a more pronounced influence on the metabolite content of Shuixian. The study evaluated the role of fermentation microorganisms in shaping the flavor based on Shuixian flavor analyses, contributing to further research into the "rock flavor", as well as potential microbial interventions.
Collapse
Affiliation(s)
- Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
10
|
Ren ZW, Pan HJ, Hu C, Le MM, Long YH, Xu Q, Xie ZW, Ling TJ. Rolling forms the diversities of small molecular nonvolatile metabolite profile and consequently shapes the bacterial community structure for Keemun black tea. Food Res Int 2024; 181:114094. [PMID: 38448096 DOI: 10.1016/j.foodres.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.
Collapse
Affiliation(s)
- Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Hong-Jing Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Cheng Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Qian Xu
- Sunriver Tea Co., Ltd, Huangshan 245600, Anhui, PR China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China.
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China.
| |
Collapse
|
11
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. Int J Mol Sci 2023; 24:15081. [PMID: 37894762 PMCID: PMC10606453 DOI: 10.3390/ijms242015081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (Y.D.); (J.Y.); (M.Y.); (J.H.); (C.F.)
| |
Collapse
|
13
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Liu C, Lin H, Wang K, Zhang Z, Huang J, Liu Z. Study on the Trend in Microbial Changes during the Fermentation of Black Tea and Its Effect on the Quality. Foods 2023; 12:foods12101944. [PMID: 37238765 DOI: 10.3390/foods12101944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The role of tea endophytes in black tea fermentation and their impact on black tea quality remain unclear. We collected fresh leaves of Bixiangzao and Mingfeng tea and processed them into black tea, while testing the biochemical composition of both the fresh leaves and the black tea. We also used high-throughput techniques, such as 16S rRNA, to analyze the dynamic changes in the microbial community structure and function during black tea processing in order to investigate the influence of dominant microorganisms on the quality of black tea formation. Our results showed that bacteria, such as Chryseobacterium and Sphingomonas, and Pleosporales fungi dominated the entire black tea fermentation process. Predicted functional analysis of the bacterial community indicated that glycolysis-related enzymes, pyruvate dehydrogenase, and tricarboxylic acid cycle-related enzymes were significantly elevated during the fermentation stage. Amino acids, soluble sugars, and tea pigment content also increased considerably during fermentation. Pearson's correlation analysis revealed that the relative bacterial abundance was closely related to the content of tea polyphenols and catechins. This study provides new insights into the changes in microbial communities during the fermentation of black tea and demonstrates understanding of the basic functional microorganisms involved in black tea processing.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhixu Zhang
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| |
Collapse
|
15
|
The relationship between bacterial dynamics, phenols and antioxidant capability during compressed white tea storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Jia WB, Zhao YQ, Liao SY, Li PW, Zou Y, Chen SX, Chen W, He CL, Du X, Zhu MZ, Xu W. Dynamic changes in the diversity and function of bacterial community during black tea processing. Food Res Int 2022; 161:111856. [DOI: 10.1016/j.foodres.2022.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
|
17
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
18
|
Woźniak M, Gałązka A, Marzec-Grządziel A, Frąc M. Microbial Community, Metabolic Potential and Seasonality of Endosphere Microbiota Associated with Leaves of the Bioenergy Tree Paulownia elongata × fortunei. Int J Mol Sci 2022; 23:ijms23168978. [PMID: 36012239 PMCID: PMC9409049 DOI: 10.3390/ijms23168978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The microbial structure and metabolic function of plant-associated endophytes play a key role in the ecology of various environments, including trees. Here, the structure and functional profiles of the endophytic bacterial community, associated with Paulownia elongata × fortunei, in correlation with seasonality, were evaluated using Biolog EcoPlates. Biolog EcoPlates was used to analyse the functional diversity of the microbiome. The total communities of leaf endophyte communities were investigated using 16S rRNA V5–V7 region amplicon deep sequencing via Illumina MiSeq. Community level physiological profiling (CLPP) analysis by the Biolog EcoPlate™ assay revealed that the carboxylic acids (19.67–36.18%) and amino acids (23.95–35.66%) were preferred by all by all communities, whereas amines and amides (0.38–9.46%) were least used. Seasonal differences in substrate use were also found. Based on the sequencing data, mainly phyla Proteobacteria (18.4–97.1%) and Actinobacteria (2.29–78.7%) were identified. A core microbiome could be found in leaf-associated endophytic communities in trees growing in different locations. This work demonstrates the application of Biolog EcoPlates in studies of the functional diversity of microbial communities in a niche other than soil and shows how it can be applied to the functional analyses of endomicrobiomes. This research can contribute to the popularisation of Biolog EcoPlates for the functional analysis of the endomicrobiome. This study confirms that the analysis of the structure and function of the plant endophytic microbiome plays a key role in the health control and the development of management strategies on bioenergy tree plantations.
Collapse
Affiliation(s)
- Małgorzata Woźniak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
- Correspondence:
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
19
|
Mixed Fermentation of Lactiplantibacillus plantarum and Bacillus licheniformis Changed the Chemical Composition, Bacterial Community, and Rumen Degradation Rate of Tea Residue. FERMENTATION 2022. [DOI: 10.3390/fermentation8080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tea residue, as a byproduct in tea processing, is highly nutritious and can be used as a good raw material for ruminant feed. This study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and Bacillus licheniformis (B. licheniformis) mixed fermentation of tea residue mixture (tea residue:wheat bran, 7:3) on chemical composition, bacterial community, and rumen degradation rate. Changes in chemical composition and bacterial community were evaluated after 0 (F0), 1 (F1), 3 (F3), and 5 (F5) days of fermentation. The rumen degradation rate was studied by the in situ nylon bag method. Compared with group F0, acid soluble protein in other groups increased while pH and neutral detergent fiber decreased (p < 0.05). The group F5 was the best. The diversity of bacterial communities in group F0 was significantly lower than those in the other groups (p < 0.05). The relative abundance of phylum Firmicutes and the genus Lactobacillus increased with increasing fermentation time. The rumen degradation rates of dry matter, crude protein, neutral detergent fiber, and acid detergent fiber were increased after fermentation. In conclusion, mixed fermentation of tea residue by L. plantarum and B. licheniformis can ameliorate chemical composition, reduce bacterial community diversity, and improve the rumen degradation rate.
Collapse
|
20
|
Yu Z, Deng H, Qu H, Zhang B, Lei G, Chen J, Feng X, Wu D, Huang Y, Ji Z. Penicillium simplicissimum possessing high potential to develop decaffeinated Qingzhuan tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Tea consumption and risk of incident dementia: A prospective cohort study of 377 592 UK Biobank participants. Transl Psychiatry 2022; 12:171. [PMID: 35474192 PMCID: PMC9042826 DOI: 10.1038/s41398-022-01923-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
As a widely consumed beverage, tea boasts diverse health benefits. Herein, we aimed to investigate the association between tea consumption and dementia risk. We conducted a prospective cohort study with 377 592 UK Biobank participants during a 9-year follow-up. Cox regression models adjusted for age, sex, ethnicity, Townsend deprivation index, education, body mass index, lifestyle factors, dietary factors and apolipoprotein E4 status were used to examine the association of tea consumption with dementia risk. Subgroup analyses stratified by age, sex and forms of dementia (Alzheimer's disease [AD] and vascular dementia [VD]) were performed. Moreover, the restricted cubic splines were used to calculate the nonlinear relationship between daily dosage of tea and dementia risk. After adjustment for all covariates, tea drinkers were 16% (95% confidence interval: 8-23) less likely to develop dementia compared with non-drinkers. Moderate consumption (1-6 cups/day) of tea exerted significant protective effects. Subgroup analyses showed that mid-aged participants or males benefited more from tea consumption. Moreover, moderate drinkers had a 16-19% lower hazard of AD and a 25-29% lower hazard of VD. Furthermore, a U-shaped association between tea consumption and dementia risk was shown (Pnon-linearity = 7E-04), and the consumption of around three cups per day showed the strongest protective effect. Within 3 cups/day, drinking one extra cup of tea per day brought a 6% reduction of incidence. In conclusion, moderate consumption of tea was significantly associated with a reduced risk of dementia, suggesting that tea consumption could be a modifiable lifestyle factor for dementia.
Collapse
|
22
|
An T, Yu S, Huang W, Li G, Tian X, Fan S, Dong C, Zhao C. Robustness and accuracy evaluation of moisture prediction model for black tea withering process using hyperspectral imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120791. [PMID: 34968835 DOI: 10.1016/j.saa.2021.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The rapid and non-destructive detection of moisture in withering leaves is an unsolved problem because the leaves are stacked together and have random orientation. To address this issue, this study aimed to establish more robust and accurate models. The performance of front side, back side and multi-region models were compared, and the front side model showed the worst transferability. Therefore, five effective wavelength (EW) selection algorithms were combined with a successive projection algorithm (SPA) to select EWs. It was found that the shuffled frog leaping algorithm (SFLA) combined with SPA was the best method for the front side model for moisture analyses. Based on the selected EWs, the extreme learning machine (ELM) became the model with the best self-verification result. Subsequently, moisture distribution maps of withering leaves were successfully generated. Considering the processing demand of withering leaves, local region models developed based on partial least squares and the SFLA-SPA method were applied to predict the moisture of withering leaves in the local and stacked region. The results showed that the RPD, Rcv and Rp values were above 1.6, 0.870 and 0.897, respectively. These results provide a useful reference for the non-destructive detection of moisture in withering leaves.
Collapse
Affiliation(s)
- Ting An
- College of Engineering and Technology, Southwest University, Chongqing 400715, China; Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Tea Research Institute, The Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Siyao Yu
- College of Mechanical and Electrical Engineering Shihezi University, Shihezi 832000, China
| | - Wenqian Huang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guanglin Li
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Xi Tian
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuxiang Fan
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunwang Dong
- Tea Research Institute, The Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Chunjiang Zhao
- College of Engineering and Technology, Southwest University, Chongqing 400715, China; Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|