1
|
Zhang P, Yu H, Huang Z, Yang P, Li H, Huang G, Tang L, Zhong Z, Hu G, Yu G, Tong H. Combined Analysis of Transcriptome and Metabolome Reveals the Heat Stress Resistance of Dongxiang Wild Rice at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2025; 14:1192. [PMID: 40284079 PMCID: PMC12030080 DOI: 10.3390/plants14081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Rice is sensitive to high temperatures at the seedling stage. In the present study, a combined analysis of transcriptome and metabolome was performed on a heat-resistant accession, DY80, from Dongxiang wild rice and a heat-sensitive variety, R974, under heat stress at the seedling stage. The results of the transcriptome and metabolome analyses were verified through qRT-PCR and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. We found that there were 1817 and 561 differentially expressed genes (DEGs) unique in DY80 and R974 under heat stress, respectively. The elite genes for the heat stress involved in Dongxiang wild rice may include upregulated genes in the pathway of unfolded protein binding; downregulated genes in the pathways of chlorophyll biosynthetic process, and cysteine and methionine metabolism; and photosystem I, photosystem II, and unchanged genes in the pathways of the anchored component of the plasma membrane, cell wall biogenesis, and photosynthesis-antenna proteins. Moreover, a total of 301 and 28 metabolites were identified as unique in DY80 and R974 after heat treatment, respectively. Further analyses showed that malic acid, stearic acid, and L-threonine might be causal metabolites, contributing to strong heat resistance in Dongxiang wild rice. These findings provide new insights into the mechanisms of heat resistance in rice.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haipeng Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Zengying Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (L.T.)
| | - Pengfei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Huijuan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guanrong Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Lu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (L.T.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Hanhua Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| |
Collapse
|
2
|
Tang L, Zheng Y, Lu H, Qiu Y, Wang H, Liao H, Xie W. Tissue-specific transcriptomic analysis reveals the molecular mechanisms responsive to cold stress in Poa crymophila, and development of EST-SSR markers linked to cold tolerance candidate genes. BMC PLANT BIOLOGY 2025; 25:360. [PMID: 40102740 PMCID: PMC11921722 DOI: 10.1186/s12870-025-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Poa crymophila is a perennial, cold-tolerant, native grass species, widely distributed in the Qinghai-Tibet Plateau. However, the tissue-specific regulatory mechanisms and key regulatory genes underlying its cold tolerance remain poorly characterized. Therefore, in this study, based on the screening and evaluation of cold tolerance of four Poa species, the cold tolerance mechanism of P. crymophila's roots, stems, and leaves and its cold tolerance candidate genes were investigated through physiological and transcriptomic analyses. RESULTS Results of the present study suggested that the cold tolerance of the four Poa species was in the following order: P. crymophila > P. botryoides > P. pratensis var. anceps > P. pratensis. Cold stress significantly changed the physiological characteristics of roots, stems, and leaves of P. crymophila in this study. In addition, the transcriptome results showed that 4434, 8793, and 14,942 differentially expressed genes (DEGs) were identified in roots, stems, and leaves, respectively; however, 464 DEGs were commonly identified in these three tissues. KEGG enrichment analysis showed that these DEGs were mainly enriched in the phenylpropanoid biosynthesis pathway (roots), photosynthesis pathway (stems and leaves), circadian rhythm-plant pathway (stems and leaves), starch and sucrose metabolism pathway (roots, stems, and leaves), and galactose metabolism pathway (roots, stems, and leaves). A total of 392 candidate genes involved in Ca2+ signaling, ROS scavenging system, hormones, circadian clock, photosynthesis, and transcription factors (TFs) were identified in P. crymophila. Weighted gene co-expression network analysis (WGCNA) identified nine hub genes that may be involved in P. crymophila cold response. A total of 200 candidate gene-based EST-SSRs were developed and characterized. Twenty-nine polymorphic EST-SSRs primers were finally used to study genetic diversity of 40 individuals from four Poa species with different cold tolerance characteristics. UPGMA cluster and STRUCTURE analysis showed that the 40 Poa individuals were clustered into three major groups, individual plant with similar cold tolerance tended to group together. Notably, markers P37 (PcGA2ox3) and P148 (PcERF013) could distinguish P. crymophila from P. pratensis var. anceps, P. pratensis, and P. botryoides. CONCLUSIONS This study provides new insights into the molecular mechanisms underlying the cold tolerance of P. crymophila, and also lays a foundation for molecular marker-assisted selection for cold tolerance improvement in Poa species.
Collapse
Affiliation(s)
- Liuban Tang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huanhuan Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yongsen Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huizhi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haoqin Liao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
3
|
Bai G, Ding R, Su Q, Ge X, Li S, Shang H, Zhao A, Chen C. Multiple Omics Analyses Reveal Activation of Nitrogen Metabolism and Flavonoid Glycosylation in Toxicodendron vernicifluum Under High Temperature. BIOLOGY 2024; 13:876. [PMID: 39596831 PMCID: PMC11591865 DOI: 10.3390/biology13110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Lacquer trees (Toxicodendron vernicifluum), economically vital, face high-temperature stress in summer. Transcriptomic, proteomic, and metabolomic analyses were employed to investigate the mechanisms by which lacquer trees respond to high temperatures. High-temperature treatment led to notable metabolite changes with 224 upregulated and 69 downregulated. Indole-3-acetic acid remained stable while abscisic acid decreased, with increases in jasmonic acid and jasmonoyl-L-isoleucine indicating complex hormonal responses. JAR1 and ABA 8'-hydroxylase encoding genes were upregulated. The rise in JAs boosted the alkaloid content and activated nitrogen transport. High temperatures also increased specific amino acids and upregulated aminotransferase and protease-encoding genes. Metabolomic analysis showed elevated flavonoid glycosides and the upregulation of glycosyltransferase genes. WPCNA found 35 protein modules involved in secondary metabolite biosynthesis, protein phosphorylation, and signal transduction. Protein-protein interaction analysis revealed MYC6's link with flavonoid biosynthesis, indicating its role in promoting flavonoids.
Collapse
Affiliation(s)
- Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China; (G.B.); (X.G.); (S.L.); (H.S.)
| | - Ruiwen Ding
- East China Academy of Inventory and Planning of NFGA, Hangzhou 310019, China;
| | - Qizhen Su
- Qinling National Botanical Garden, Xi’an 710061, China;
| | - Xiaomin Ge
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China; (G.B.); (X.G.); (S.L.); (H.S.)
| | - Shasha Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China; (G.B.); (X.G.); (S.L.); (H.S.)
| | - Huiying Shang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China; (G.B.); (X.G.); (S.L.); (H.S.)
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China; (G.B.); (X.G.); (S.L.); (H.S.)
| |
Collapse
|
4
|
Moeinfar M, Ghiasvand A, Khaleghi E. Chemical bonding of cross-linked glutaraldehyde/chitosan on the surface of a titanium wire to prepare a robust biocompatible SPME fiber for analysis of phytohormones in plants. Food Chem 2024; 449:139168. [PMID: 38574521 DOI: 10.1016/j.foodchem.2024.139168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 μg L-1) with LODs over the range of 0.01-0.06 μg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.
Collapse
Affiliation(s)
- Marjan Moeinfar
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Esmaeil Khaleghi
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Li Y, Wu Q, Zhu L, Zhang R, Tong B, Wang Y, Han Y, Lu Y, Dou D, Tian Z, Zheng J, Zhang Y. Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis. PLANTA 2024; 260:61. [PMID: 39060400 DOI: 10.1007/s00425-024-04486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
MAIN CONCLUSION The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.
Collapse
Affiliation(s)
- Yuyan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Qianwen Wu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Lingyi Zhu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruili Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yan Wang
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yi Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Dequan Dou
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhihui Tian
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
6
|
Sun Q, Li X, Sun L, Sun M, Xu H, Zhou X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 2024; 19:40. [PMID: 38807240 PMCID: PMC11134694 DOI: 10.1186/s13062-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiangqun Li
- Jilin Engineering Vocational College, Siping, China
| | - Li Sun
- Siping Central People's Hospital, Siping, China
| | - Mingyi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
7
|
He M, Geng G, Mei S, Wang G, Yu L, Xu Y, Wang Y. Melatonin modulates the tolerance of plants to water stress: morphological response of the molecular mechanism. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23199. [PMID: 38354692 DOI: 10.1071/fp23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Water stress (drought and waterlogging) leads to an imbalance in plant water distribution, disrupts cell homeostasis, and severely inhibits plant growth. Melatonin is a growth hormone that plants synthesise and has been shown to resist adversity in many plants. This review discusses the biosynthesis and metabolism of melatonin, as well as the changes in plant morphology and physiological mechanisms caused by the molecular defence process. Melatonin induces the expression of related genes in the process of plant photosynthesis under stress and protects the structural integrity of chloroplasts. Exogenous melatonin can maintain the dynamic balance of root ion exchange under waterlogging stress. Melatonin can repair mitochondria and alleviate damage caused by reactive oxygen species and reactive nitrogen species; and has a wide range of uses in the regulation of stress-specific genes and the activation of antioxidant enzyme genes. Melatonin improves the stability of membrane lipids in plant cells and maintains osmotic balance by regulating water channels. There is crosstalk between melatonin and other hormones, which jointly improve the ability of the root system to absorb water and breathe and promote plant growth. Briefly, as a multifunctional molecule, melatonin improves the tolerance of plants under water stress and promotes plant growth and development.
Collapse
Affiliation(s)
- Minmin He
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuyang Mei
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yao Xu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
8
|
Xiang N, Zhang B, Hu J, Li K, Guo X. Modulation of carotenoid biosynthesis in maize (Zea mays L.) seedlings by exogenous abscisic acid and salicylic acid under low temperature. PLANT CELL REPORTS 2023; 43:1. [PMID: 38108914 DOI: 10.1007/s00299-023-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
KEY MESSAGE Abscisic acid could regulate structural genes in the carotenoid biosynthesis pathway and alleviate the decrease of carotenoids in maize seedlings under low-temperature stress. Low temperature often hampers the development of maize seedlings and hinders the accumulation of carotenoids, which are functional against chilling stress for plants and providing health benefits for human. To explore effective approaches in reducing chilling stress and enhancing the potential nutritional values of maize seedlings, exogenous plant hormones abscisic acid (ABA) and salicylic acid (SA) that may affect carotenoid biosynthesis were applied on low-temperature-stressed maize seedlings. Results showed that low temperature significantly reduced the carotenoid levels in maize seedlings, only preserving 62.8% in comparison to the control. The applied ABA probably interacted with the ABA-responsive cis-acting elements (ABREs) in the promoter regions of PSY3, ZDS and CHYB and activated their expressions. Consequently, the total carotenoid concentration was apparently increased to 1121 ± 47 ng·g-1 fresh weight (FW), indicating the stress alleviation by ABA. The application of SA did not yield positive results in alleviating chilling stress in maize seedlings. However, neoxanthin content could be notably boosted to 52.12 ± 0.45 ng·g-1 FW by SA, offering a biofortification strategy for specific nutritional enhancement. Structural gene PSY1 demonstrated positive correlations with β-carotene and zeaxanthin (r = 0.93 and 0.89), while CRTISO was correlated with total carotenoids (r = 0.92), indicating their critical roles in carotenoid accumulation. The present study exhibited the effectiveness of ABA to mitigate chilling stress and improve the potential nutritional values in low-temperature-stressed maize seedlings, thereby promoting the production of plant-based food sources.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Bing Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Li Z, Jiang E, Liu M, Sun Q, Gao Z, Du Y. Effects of Coverlys TF150 ® on the Photosynthetic Characteristics of Grape. Int J Mol Sci 2023; 24:16659. [PMID: 38068982 PMCID: PMC10706710 DOI: 10.3390/ijms242316659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal antifoggy PE coating that has not yet been popularized as a rain shelter film for grapes in China. To investigate the effects of Coverlys TF150® on grapes, we measured the microdomain environment, leaf development, and photosynthetic characteristics of 'Miguang' (Vitis vinifera × V. labrusca) under rain-shelter cultivation and performed transcriptome analysis. The results showed that Coverlys TF150® significantly reduced (p < 0.05) the light intensity, temperature, and humidity compared with PO film, increased the chlorophyll content and leaf thickness (particularly palisade tissue thickness), and increased stomatal density and stomatal opening from 10:00 to 14:00. Coverlys TF150® was observed to improve the maximum efficiency of photosystem II (Fv/Fm), photochemical quenching (qP), the electron transfer rate (ETR), and the actual photochemical efficiency (ΦPSII) from 10:00 to 14:00. Moreover, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) of grape leaves significantly increased (p < 0.05) from 10:00 to 14:00. RNA-Seq analysis of the grape leaves at 8:00, 10:00, and 12:00 revealed 1388, 1562, and 1436 differential genes at these points in time, respectively. KEGG enrichment analysis showed the occurrence of protein processing in the endoplasmic reticulum. Plant hormone signal transduction and plant-pathogen interaction were identified as the metabolic pathways with the highest differential gene expression enrichment. The psbA encoding D1 protein was significantly up-regulated in both CO10vsPO10 and CO12vsPO12, while the sHSPs family genes were significantly down-regulated in all time periods, and thus may play an important role in the maintenance of the photosystem II (PSII) activity in grape leaves under Coverlys TF150®. Compared with PO film, the PSI-related gene psaB was up-regulated, indicating the ability of Coverlys TF150® to better maintain PSI activity. Compared with PO film, the abolic acid receptacle-associated gene PYL1 was down-regulated at all time periods under the Coverlys TF150® treatment, while PP2C47 was significantly up-regulated in CO10vsPO10 and CO12vsPO12, inducing stomatal closure. The results reveal that Coverlys TF150® alleviates the stress of high temperature and strong light compared with PO film, improves the photosynthetic capacity of grape leaves, and reduces the midday depression of photosynthesis.
Collapse
Affiliation(s)
- Zhonghan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Enshun Jiang
- Shandong Institute of Pomology, Tai’an 271000, China;
| | - Minghui Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Qinghua Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Zhen Gao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Yuanpeng Du
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| |
Collapse
|
10
|
Wang Z, Xiao Y, Chang H, Sun S, Wang J, Liang Q, Wu Q, Wu J, Qin Y, Chen J, Wang G, Wang Q. The Regulatory Network of Sweet Corn ( Zea mays L.) Seedlings under Heat Stress Revealed by Transcriptome and Metabolome Analysis. Int J Mol Sci 2023; 24:10845. [PMID: 37446023 DOI: 10.3390/ijms241310845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Heat stress is an increasingly significant abiotic stress factor affecting crop yield and quality. This study aims to uncover the regulatory mechanism of sweet corn response to heat stress by integrating transcriptome and metabolome analyses of seedlings exposed to normal (25 °C) or high temperature (42 °C). The transcriptome results revealed numerous pathways affected by heat stress, especially those related to phenylpropanoid processes and photosynthesis, with 102 and 107 differentially expressed genes (DEGs) identified, respectively, and mostly down-regulated in expression. The metabolome results showed that 12 or 24 h of heat stress significantly affected the abundance of metabolites, with 61 metabolites detected after 12 h and 111 after 24 h, of which 42 metabolites were detected at both time points, including various alkaloids and flavonoids. Scopoletin-7-o-glucoside (scopolin), 3-indolepropionic acid, acetryptine, 5,7-dihydroxy-3',4',5'-trimethoxyflavone, and 5,6,7,4'-tetramethoxyflavanone expression levels were mostly up-regulated. A regulatory network was built by analyzing the correlations between gene modules and metabolites, and four hub genes in sweet corn seedlings under heat stress were identified: RNA-dependent RNA polymerase 2 (RDR2), UDP-glucosyltransferase 73C5 (UGT73C5), LOC103633555, and CTC-interacting domain 7 (CID7). These results provide a foundation for improving sweet corn development through biological intervention or genome-level modulation.
Collapse
Affiliation(s)
- Zhuqing Wang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Yang Xiao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Hailong Chang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Shengren Sun
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Jianqiang Wang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Qinggan Liang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Qingdan Wu
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Jiantao Wu
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Yuanxia Qin
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Junlv Chen
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Gang Wang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Qinnan Wang
- Institude of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Chen X, Chu S, Chi Y, Wang J, Wang R, You Y, Hayat K, Khalid M, Zhang D, Zhou P, Jiang J. Unraveling the role of multi-walled carbon nanotubes in a corn-soil system: Plant growth, oxidative stress and heavy metal(loid)s behavior. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107802. [PMID: 37269820 DOI: 10.1016/j.plaphy.2023.107802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
In the age of nanotechnological advancement, carbon nanotubes (CNTs) are drawing global attention. However, few studies have been published on the crop growth responses to CNTs in heavy metal(loid)s contaminated environments. A pot experiment was conducted to assess the effect of multi-walled carbon nanotubes (MWCNTs) on plant development, oxidative stress, and heavy metal(loid)s behavior in a corn-soil system. Corn (Zea mays L.) seedlings were cultivated in soil containing Cadmium (Cd) and Arsenic (As) that had been primed with 0, 100, 500, and 1000 mg kg-1 MWCNTs. The application of 100 and 500 mg kg-1 MWCNTs improved shoot length by 6.45% and 9.21% after 45 days, respectively. Total plant dry biomass increased by 14.71% when treated with 500 mg kg-1 MWCNTs but decreased by 9.26% when exposed to 1000 mg kg-1 MWCNTs. MWCNTs treatment did not affect Cd accumulation in plants. On the other hand, the bio-concentration factor of As was inversely associated with plant growth (p < 0.05), which was declined in MWCNTs treatments. Oxidative stress was aggravated when plants were exposed to MWCNTs, thus activating the antioxidant enzymes system in the corn. In contrast, TCLP-extractable Cd and As in soil significantly decreased than in the control. Additionally, the soil nutrients were changed under MWCNTs treatments. Our findings also revealed that a particular concentration of MWCNTs can mitigate the toxicity of Cd and As in corn seedlings. Therefore, these results suggest the prospective application of CNTs in agricultural production, ensuring environmental and soil sustainability.
Collapse
Affiliation(s)
- Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, 550001, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yimin You
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, 130118, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Cai S, Zhang Y, Hu A, Liu M, Wu H, Wang D, Zhang W. Dissolved organic matter transformation mechanisms and process optimization of wastewater sludge hydrothermal humification treatment for producing plant biostimulants. WATER RESEARCH 2023; 235:119910. [PMID: 37001233 DOI: 10.1016/j.watres.2023.119910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Understanding the composition, transformation and bioactivity of dissolved organic matter (DOM) at the molecular level is crucial for investigating the hydrothermal humification process of wastewater sludge and producing ecological fertilizers. In this study, DOM transformation pathways under alkali-thermal humification treatment (AHT) were characterized by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with molecular reaction network analysis. The effects of DOM on plant growth were examined using hydroponics and transcriptomic analysis. In the wastewater sludge humification process, AHT produced maximum amounts of protein (3260.56 mg/L) and humic acid (5788.24 mg/L) after 12 h. FT-ICR MS results indicated that protein-like structures were prone to continuous oxidation and were ultimately transformed into aromatic N-containing compounds resembling humic substances. Several reactive fragments (such as -C2H2O2, -C3H4O2, and -C4H6O2) formed by the Maillard reaction (MR) were identified as potential precursors to humic acid (HA). In terms of biological effects, DOM12h showed the highest rice germination and growth activity, whereas that produced by AHT for a longer period (> 12 h) displayed phytotoxicity owing to the accumulation of toxic substances. Plant biostimulants (such as amino acids and HAs) in DOM improved energy metabolism and carbohydrate storage in rice seedlings by upregulating the "starch and sucrose metabolism" pathways. Toxic substances (such as pyrrole, pyridine, and melanoidin) in DOM can activate cell walls formation to inhibit abiotic stimuli in rice seedlings through the biosynthesis of phenylpropanoid pathway. These findings provide a theoretical basis for optimizing sludge hydrothermal humification and recovering high-quality liquid fertilizers.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Ming Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hanjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
14
|
Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid. Essays Biochem 2022; 66:657-671. [PMID: 35848080 PMCID: PMC9528083 DOI: 10.1042/ebc20210089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation. We highlight recent advances in our understanding of the complex phytohormone networks with less focus on archetypal immunity-related pathways and discuss protein and transcription factor signalling hubs that mediate hormone interplay.
Collapse
|
15
|
VEDENICHEVA N, SHCHERBATYUK M, KOSAKIVSKA I. Effect of low-temperature stress on the growth of plants of Secale cereale (Poaceae) and endogenous cytokinin content in roots and shoots. UKRAINIAN BOTANICAL JOURNAL 2022. [DOI: 10.15407/ukrbotj79.03.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phytohormones play a key role in the regulation of plant acclimation to low temperature. To elucidate the role of cytokinins in rye plant response to chilling, we studied the dynamics of these hormones in shoots and roots under short-term and prolonged cold stress. The 7-day-old plants were exposed to cold stress (2 °C) for 2 h (alarm phase of response) or for 6 h for two days (acclimation phase of response). Endogenous content of cytokinins was analyzed by HPLC-MS method. Low temperature had a differential effect on the content of individual cytokinins and their localization in rye plants. During the short-term stress, a decrease in the content of active cytokinins (trans-zeatin and trans-zeatin riboside) in the roots and an increase in the shoots were shown. Prolonged low-temperature stress declined the amount of cytokinins except trans-zeatin riboside, which was detected in both roots and shoots. Significant rise in trans-zeatin riboside content in roots and shoots in this period evidenced an important role of this cytokinin during cold acclimation of rye plants.
Collapse
|
16
|
Yue C, Chen Q, Hu J, Li C, Luo L, Zeng L. Genome-Wide Identification and Characterization of GARP Transcription Factor Gene Family Members Reveal Their Diverse Functions in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:947072. [PMID: 35845671 PMCID: PMC9280663 DOI: 10.3389/fpls.2022.947072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Golden2, ARR-B, Psr1 (GARP) proteins are plant-specific transcription factors that play vital and diverse roles in plants. However, systematic research on the GARP gene family in plants, including tea plant (Camellia sinensis), is scarce. In this study, a total of 69 GARP genes were identified and characterized from the tea plant genome based on the B-motif sequence signature. The CsGARP genes were clustered into five subfamilies: PHR1/PHL1, KAN, NIGT1/HRS1/HHO, GLK and ARR-B subfamilies. The phylogenetic relationships, gene structures, chromosomal locations, conserved motifs and regulatory cis-acting elements of the CsGARP family members were comprehensively analyzed. The expansion of CsGARP genes occurred via whole-genome duplication/segmental duplication, proximal duplication, and dispersed duplication under purifying selective pressure. The expression patterns of the CsGARP genes were systematically explored from various perspectives: in different tissues during different seasons; in different leaf color stages of tea plant; under aluminum treatment and nitrogen treatment; and in response to abiotic stresses such as cold, drought and salt and to biotic stress caused by Acaphylla theae. The results demonstrate that CsGARP family genes are ubiquitously expressed and play crucial roles in the regulation of growth and development of tea plant and the responses to environmental stimuli. Collectively, these results not only provide valuable information for further functional investigations of CsGARPs in tea plant but also contribute to broadening our knowledge of the functional diversity of GARP family genes in plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyong Luo
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Liang Zeng
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Qu K, Cheng Y, Gao K, Ren W, Fry EL, Yin J, Liu Y. Growth-Defense Trade-Offs Induced by Long-term Overgrazing Could Act as a Stress Memory. FRONTIERS IN PLANT SCIENCE 2022; 13:917354. [PMID: 35720531 PMCID: PMC9201768 DOI: 10.3389/fpls.2022.917354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023]
Abstract
Long-term overgrazing (OG) is one of the key drivers of global grassland degradation with severe loss of productivity and ecosystem functions, which may result in stress memory such as smaller stature of grassland plants. However, how the OG-induced stress memory could be regulated by phytohormones is unknown. In this study, we investigated the changes of four phytohormones of cloned offspring of Leymus chinensis that were developed from no-grazing (NG) plants and OG plants with a grazing history of 30 years. The concentrations of auxin (IAA) and gibberellic acid (GA) in OG plant leaves were 45% and 20% lower than control, respectively. Meanwhile, the level of abscisic acid (ABA) in OG leaves nearly doubled compared with that in NG leaves. The situation was quite similar in roots. Unexpectedly, no significant changes in the jasmonic acid (JA) level were observed between OG and NG plants. The changes in gene expression patterns between OG and NG plants were also investigated by transcriptomic analysis. In total, 302 differentially expressed genes (DEGs) were identified between OG and NG plants, which were mainly classified into the functions of synthesis, receptor, and signal transduction processes of phytohormones. The expression of 24 key genes related to the biosynthesis and signal transduction of IAA and GA was downregulated in OG plants. Among them, OASA1 and AO1 (regulating the biosynthesis of IAA and ABA, respectively) were reduced significantly by 88 and 92%, respectively. In addition, the content of secondary metabolites related to plant defense such as flavonoids and phenols was also increased in leaves. Taken together, the decrease of positive plant growth-related hormones (IAA and GA) together with the increase of plant stress-related hormones or factors (ABA, flavonoids, and phenols) induced the growth-defense trade-offs for L. chinensis adaptation to long-term OG stress. The findings reported in this study shed new light on the mechanism of plant-animal interaction in the grassland ecosystem and provide a deeper insight into optimizing grazing management and sustainable utilization of grassland.
Collapse
Affiliation(s)
- Kairi Qu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yunxiang Cheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kairu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yaling Liu
- Inner Mongolia Mongolian Grass Seed Industry Science and Technology Research Institute Co., Ltd., Hohhot, China
| |
Collapse
|
19
|
Xiang N, Zhao Y, Zhang B, Gu Q, Chen W, Guo X. Volatiles Accumulation during Young Pomelo ( Citrus maxima (Burm.) Merr.) Fruits Development. Int J Mol Sci 2022; 23:5665. [PMID: 35628476 PMCID: PMC9144960 DOI: 10.3390/ijms23105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
As widely planted fruits with high nutritional and medical values, pomelos are managed systematically to achieve the largest economic benefits. But the annual shedding of young pomelos, which could be applied as feedstocks for essential oil extraction with their abundant volatiles, leads to a waste of source. The present study selected two commonly planted pomelo (Citrus maxima (Burm.) Merr.) varieties in Southern China, to investigate the volatile profiles during young pomelo fruits development. Combing transcriptomic analysis, this study aimed at identifying the prominent volatile components in young pomelo fruits in order to preferably extract profitable volatiles, as well, increasing the knowledge concerning regulatory roles of transcription factors (TFs) on volatiles accumulation in young pomelos. Totally 29 volatiles were identified, including 14 monoterpenoids and 13 sesquiterpenoids. Diprene was the principal component with the highest amount. Volatiles were generally decreased during fruits development but preferable stages were figured out for volatile collections. 12 and 17 TFs were related to developing time while ERF003 and MYC2 were highly correlated to monoterpenoids. These findings put forward the comprehensive usages of young pomelos and enriched the regulatory roles of TFs on both fruit development and volatiles metabolism.
Collapse
Affiliation(s)
- Nan Xiang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Yihan Zhao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Bing Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Qiuming Gu
- Southern Golden Pomelo Research Institute of Meizhou, Meizhou 514743, China; (Q.G.); (W.C.)
| | - Weiling Chen
- Southern Golden Pomelo Research Institute of Meizhou, Meizhou 514743, China; (Q.G.); (W.C.)
| | - Xinbo Guo
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| |
Collapse
|
20
|
Xiang N, Xie H, Qin L, Wang M, Guo X, Zhang W. Effect of Climate on Volatile Metabolism in 'Red Globe' Grapes ( Vitis vinifera L.) during Fruit Development. Foods 2022; 11:foods11101435. [PMID: 35627003 PMCID: PMC9140514 DOI: 10.3390/foods11101435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
With unique flavor and nutritional value, grapes are popular for eating and for the byproducts obtained in their processing. This study cultivated a popular grape variety, ‘Red Globe’, in two regions with different climates to investigate the discrepancies in their volatiles in response to climate. Saccharides, organic acids and transcriptomic and volatile metabolic analyses were studied separately via GC-FID, RNA sequencing and GC-MS/MS methods during the development of grape berries. In total, 83 volatiles were determined in samples, with (E)-2-hexenal the most abundant. Fatty acid derivatives and terpenoids in grapes showed discrepancies in different climates, and some of them were correlated to specific transcription factors. VvWRKY22 was influenced by climate conditions and was relative to saccharide accumulation. MYB-related transcription factors (TFs) were highly correlated with volatiles that accumulated during fruit ripening, especially decanal. Terpenoids showed correlations with a gene module that contained ERFs and HSFs. The findings support the hypothesis that fruit maturity and volatile formations vary in grape berries under different climates. Moreover, specific TFs could participate in volatile accumulations. The given results not only serve to enrich theoretical knowledge on the regulatory mechanism of volatiles in grapes, but also provide guidance for enhancing grape flavor and aroma by modulating cultivational conditions.
Collapse
Affiliation(s)
- Nan Xiang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
| | - Hui Xie
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
| | - Liuwei Qin
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
| | - Min Wang
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
| | - Xinbo Guo
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
- Correspondence: (X.G.); (W.Z.); Tel./Fax: +86-20-87113848 (X.G.); +86-991-4503409 (W.Z.)
| | - Wen Zhang
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
- Correspondence: (X.G.); (W.Z.); Tel./Fax: +86-20-87113848 (X.G.); +86-991-4503409 (W.Z.)
| |
Collapse
|
21
|
Xiang N, Hu J, Zhang B, Cheng Y, Wang S, Guo X. Effect of Light Qualities on Volatiles Metabolism in Maize (Zea mays L.) Sprouts. Food Res Int 2022; 156:111340. [DOI: 10.1016/j.foodres.2022.111340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
|