1
|
Lu L, Zhang R, Zhang Z, Hou M, Zeng Q, Li L, Sun Y, Lin Y, Chen D, Song Y, Rensen Z. Ethylene-Mediated Production and Emission of Limonene Influence Brown Planthopper Preference for Rice Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2890-2901. [PMID: 39846346 DOI: 10.1021/acs.jafc.4c13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Volatile organic compounds (VOCs) play a key role in plant communication with other organisms in the natural environment. However, the regulatory role of the phytohormone ethylene in volatile production in plants remains unclear. In this study, we demonstrated that the application of an ethylene precursor and amplification of ethylene signaling make rice plants more attractive to brown planthopper (BPH) females for feeding and oviposition. A combination of transcriptome and VOCs analyses indicated that overexpression of OsEIL1, a master transcription factor in the ethylene pathway, influences the transcript levels of several terpene synthase genes as well as the production of volatile terpenes. Further investigation revealed that the expression of the limonene synthase gene, OsTPS19, was down-regulated in OsEIL1-overexpressing rice plants, leading to a decrease in limonene production and release. Genetic analysis confirmed the essential role of limonene in the OsEIL1-mediated attractiveness of rice plants to BPH. Our findings provide new perspectives for understanding the role of ethylene signaling in volatile-mediated plant-insect interactions.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongjun Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjiao Hou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiyue Zeng
- College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng Rensen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Lv B, Teng D, Huang X, Liu X, Liu D, Khashaveh A, Pan H, Zhang Y. Functional characterization of a novel terpene synthase GaTPS1 involved in (E)-α-bergamotene biosynthesis in Gossypium arboreum. Int J Biol Macromol 2024; 281:136081. [PMID: 39357711 DOI: 10.1016/j.ijbiomac.2024.136081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Terpenoids in plants are mainly synthesized by terpene synthases (TPSs), which play an important role in plant-environment interactions. Gossypium arboreum is one of the important cotton cultivars with excellent pest resistance, however, the biosynthesis of most terpenoids in this plant remains unknown. In this study, we performed a comparative transcriptome analysis of leaves from intact and Helicoverpa armigera-infested cotton plants. The results showed that the H. armigera infestation mainly induced the JA signaling pathway, ten TPS genes were differentially expressed in G. arboreum leaves. Among them, a novel terpene synthase, GaTPS1, was heterologously expressed and functionally characterized in vitro. The enzymatic reaction indicated that recombinant GaTPS1 was primarily responsible for the production of (E)-α-bergamotene. Moreover, molecular docking and site-directed mutagenesis analysis demonstrated that two amino acid residues, A412L and Y535F, distinctly influenced the catalytic activities and product specificity of GaTPS1. The mutants GaTPS1-A412L and GaTPS1-Y535F resulted in a decrease in the proportion of products (E)-α-bergamotene and D-limonene, while an increase in the proportion of products (E)-β-farnesene, α-pinene and β-myrcene. Our findings provide valuable insights into understanding the molecular basis of terpenoid diversity in G. arboreum, with potential applications in plant metabolism regulation and the improvement of resistant cotton cultivars.
Collapse
Affiliation(s)
- Beibei Lv
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongsheng Pan
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
4
|
Wang W, Wang M, Feng J, Zhang S, Chen Y, Zhao Y, Tian R, Zhu C, Nieuwenhuizen NJ. Terpene Synthase Gene Family in Chinese Chestnut ( Castanea mollissima BL.) Harbors Two Sesquiterpene Synthase Genes Implicated in Defense against Gall Wasp Dryocosmus kuriphilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1571-1581. [PMID: 38206573 DOI: 10.1021/acs.jafc.3c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.
Collapse
Affiliation(s)
- Wu Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Mindy Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| | - Jiao Feng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yuqiang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Cancan Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| |
Collapse
|
5
|
Wang Q, Zhao X, Jiang Y, Jin B, Wang L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023; 13:1725. [PMID: 38136596 PMCID: PMC10741589 DOI: 10.3390/biom13121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.Z.); (Y.J.); (B.J.)
| |
Collapse
|
6
|
Chen X, Nowicki M, Wadl PA, Zhang C, Köllner TG, Payá‐Milans M, Huff ML, Staton ME, Chen F, Trigiano RN. Chemical profile and analysis of biosynthetic pathways and genes of volatile terpenes in Pityopsis ruthii, a rare and endangered flowering plant. PLoS One 2023; 18:e0287524. [PMID: 37352235 PMCID: PMC10289357 DOI: 10.1371/journal.pone.0287524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
It is critical to gather biological information about rare and endangered plants to incorporate into conservation efforts. The secondary metabolism of Pityopsis ruthii, an endangered flowering plant that only occurs along limited sections of two rivers (Ocoee and Hiwassee) in Tennessee, USA was studied. Our long-term goal is to understand the mechanisms behind P. ruthii's adaptation to restricted areas in Tennessee. Here, we profiled the secondary metabolites, specifically in flowers, with a focus on terpenes, aiming to uncover the genomic and molecular basis of terpene biosynthesis in P. ruthii flowers using transcriptomic and biochemical approaches. By comparative profiling of the nonpolar portion of metabolites from various tissues, P. ruthii flowers were rich in terpenes, which included 4 monoterpenes and 10 sesquiterpenes. These terpenes were emitted from flowers as volatiles with monoterpenes and sesquiterpenes accounting for almost 68% and 32% of total emission of terpenes, respectively. These findings suggested that floral terpenes play important roles for the biology and adaptation of P. ruthii to its limited range. To investigate the biosynthesis of floral terpenes, transcriptome data for flowers were produced and analyzed. Genes involved in the terpene biosynthetic pathway were identified and their relative expressions determined. Using this approach, 67 putative terpene synthase (TPS) contigs were detected. TPSs in general are critical for terpene biosynthesis. Seven full-length TPS genes encoding putative monoterpene and sesquiterpene synthases were cloned and functionally characterized. Three catalyzed the biosynthesis of sesquiterpenes and four catalyzed the biosynthesis of monoterpenes. In conclusion, P. ruthii plants employ multiple TPS genes for the biosynthesis of a mixture of floral monoterpenes and sesquiterpenes, which probably play roles in chemical defense and attracting insect pollinators alike.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Phillip A. Wadl
- United States Department of Agriculture, Agricultural Research Service, U. S. Vegetable Laboratory, Charleston, SC, United States of America
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Miriam Payá‐Milans
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Matthew L. Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
7
|
Tran HTD, Nguyen HTT, Huynh TB, Nguyen HN, Nguyen LT, Tran NU, Pham BTM, Nguyen DH, Tran T, Nguyen TTH. Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding- and methyl jasmonate-induced linalool emission in rubber (Hevea brasiliensis). JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153942. [PMID: 36805520 DOI: 10.1016/j.jplph.2023.153942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Rubber (Hevea brasiliensis) is a latex-producing plant that often encounters mechanical wounding, as well as pathogen and pest attacks through wound sites during and after tapping. Terpenoids play an important role in the ecological interactions of many plant species, and their diversity is mainly generated by enzymes known as terpene synthases (TPS). In this study, one cDNA sequence encoding a putative terpene synthase, HbTPS20, was obtained from the bark tissues of H. brasiliensis. The encoded protein contains 610 amino acids with a putative N-terminal plastid transit peptide of approximately 70 residues. It belongs to the TPS-b subfamily. Further phylogenetic analysis showed that HbTPS20 formed a separate branch that diverged from the progenitor of all other potentially functional terpene synthases of the rubber TPS-b subfamily. The truncated HbTPS20 without the signal peptide coding sequence was successfully expressed in E. coli and in vitro enzymatic assays with geranyl diphosphate (GPP) or neryl diphosphate (NPP) as a substrate defined HbTPS20 as an active linalool synthase (HbLIS) with the ability to produce linalool as the principal product. RT-qPCR analysis showed that the highest transcript levels of HbTPS20 were found in barks, and this gene was expressed at 2.26- and 250-fold greater levels in the bark tissues of wounded and MeJA-treated plants, respectively, than in those of the control plants. This indicates that this gene may be involved in the induced stress responses of rubber.
Collapse
Affiliation(s)
- Huong Thi Diem Tran
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Hong Thi Thuy Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Tram Bich Huynh
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Hang Nguyet Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Long Thanh Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Nhi Uyen Tran
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Binh Thi My Pham
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Du Huy Nguyen
- Central Laboratory of Analysis, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Thanh Tran
- Department of Genetics and Plant Breeding, Rubber Research Institute of Vietnam, Binh Duong, 820000, Vietnam
| | - Thuong Thi Hong Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, 700000, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
8
|
Yu H, Kivimäenpää M, Blande JD. Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc Biol Sci 2022; 289:20220963. [PMID: 36069014 PMCID: PMC9449471 DOI: 10.1098/rspb.2022.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
9
|
Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. FRONTIERS IN PLANT SCIENCE 2022; 13:973197. [PMID: 36035721 PMCID: PMC9403765 DOI: 10.3389/fpls.2022.973197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Silva DB, Hanel A, Franco FP, de Castro Silva-Filho M, Bento JMS. Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. PEST MANAGEMENT SCIENCE 2022; 78:3314-3323. [PMID: 35485909 DOI: 10.1002/ps.6958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant defenses activated by European zoophytophagous predators trigger behavioral responses in arthropods, benefiting pest management. However, repellence or attraction of pests and beneficial insects seems to be species-specific. In the neotropical region, the mirid predator Macrolophus basicornis has proved to be a promising biological control agent of important tomato pests; nevertheless, the benefits of its phytophagous behavior have never been explored. Therefore, we investigated if M. basicornis phytophagy activates tomato plant defenses and the consequences for herbivores and natural enemies. RESULTS Regardless of the induction period of M. basicornis on tomato plants, Tuta absoluta females showed no preference for the odors emitted by induced or control plants. However, Tuta absoluta oviposited less on plants induced by M. basicornis for 72 h than on control plants. In contrast, induced plants repelled Bemisia tabaci females, and the number of eggs laid was reduced. Although females of Trichogramma pretiosum showed no preference between mirid-induced or control plants, we observed high attraction of the parasitoid Encarsia inaron and conspecifics to plants induced by M. basicornis. While the mirid-induced plants down-regulated the expression of genes involving the salicylic acid (SA) pathway over time, the genes related to the jasmonic acid (JA) pathway were up-regulated, increasing emissions of fatty-acid derivatives and terpenes, which might have influenced the arthropods' host/prey choices. CONCLUSION Based on both the molecular and behavioral findings, our results indicated that in addition to predation, M. basicornis benefits tomato plant resistance indirectly through its phytophagy. This study is a starting point to pave the way for a novel and sustainable pest-management strategy in the neotropical region. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diego Bastos Silva
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Aldo Hanel
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Flavia Pereira Franco
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - José Mauricio Simões Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
11
|
Jiang Y, Ye J, Liu B, Rikisahedew JJ, Tosens T, Niinemets Ü. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153721. [PMID: 35597107 DOI: 10.1016/j.jplph.2022.153721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
12
|
Li M, Xia S, Zhang T, Williams L, Xiao H, Lu Y. Volatiles from Cotton Plants Infested by Agrotis segetum (Lep.: Noctuidae) Attract the Larval Parasitoid Microplitis mediator (Hym.: Braconidae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070863. [PMID: 35406842 PMCID: PMC9002379 DOI: 10.3390/plants11070863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 05/23/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs), chemicals produced by plants infested by herbivorous insects, can act as kairomones that recruit natural enemies of the pest herbivore. Agrotis segetum (Denis and Schiffermüller) is a common, important pest of seedling cotton in Xinjiang Province, China, and the braconid Microplitis mediator (Haliday) is an important mortality factor of this pest's larvae. In olfactometer tests, which included healthy foliage, infested foliage, or infested roots, M. mediator preferred A. segetum-infested cotton plants to healthy cotton plants. In GC-MS analyses of plant-emitted volatiles, we found that compounds emitted increased 14.9- and 13.3- fold after leaf infestation and root infestation, respectively, compared to healthy control plants. The volatiles were mainly p-xylene, nonanal, tetradecane, decanal, benzaldehyde, β-caryophyllene, and humulene, while linalool was only present in the leaf-infestation treatment. In addition, principal component analysis indicated that all 18 compounds were associated with the infested plants, especially β-caryophyllene, p-xylene, and decanal. Based on the above studies and previous functional evaluations of the volatile compounds, it can be demonstrated that these compounds play a crucial role in modulating the interactions between A. segetum and M. mediator and regulating parasitoid behavior. It may be possible to enhance the biological control of A. segetum by M. mediator through the application of HIPVs.
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.L.); (S.X.)
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shike Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.L.); (S.X.)
| | - Tao Zhang
- Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Institute of Plant Protection, Ministry of Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China;
| | - Livy Williams
- USDA-ARS U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.L.); (S.X.)
| |
Collapse
|