1
|
Du J, Xu Z, Sun H, Zhu Y, Zhang J, Huang M, Liu Y, Liu H, Sun B, Wu J. Effect of a new sea-aging method on the flavor of Baijiu. Food Res Int 2025; 212:116442. [PMID: 40382039 DOI: 10.1016/j.foodres.2025.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
Aging is a crucial procedure that enhances the quality of distilled liquor. A study was conducted to analyze the effect of a new sea-aging method on the flavor of Baijiu compared to traditional storage. Sensory evaluations showed that the pleasantness of the three sea-aging liquors was enhanced compared to the corresponding traditional liquors. A total of 56 aroma active substances were identified by aroma extract dilution analysis (AEDA), and the concentrations of some typical aroma compounds in the sea-aging samples were more similar to the effects of long-term aging. Both the sensory and quantitative analysis validated the positive effect of the sea storage on Baijiu quality. Five compounds with important effects on distinguishing traditional and sea-aging liquors were screened by using VIP (>1) and OAV (>1), and ethyl pentanoate, furfural, and acetaldehyde were validated as having significant effects on the aroma of sea-aging Baijiu according to the addition/omission tests.
Collapse
Affiliation(s)
- Jingyi Du
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zongxi Xu
- Qingdao Langyatai Group Ltd., Qingdao 266500, China
| | - Huibin Sun
- Qingdao Langyatai Group Ltd., Qingdao 266500, China
| | - Yunfeng Zhu
- Qingdao Langyatai Group Ltd., Qingdao 266500, China
| | - Jian Zhang
- Qingdao Langyatai Group Ltd., Qingdao 266500, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Yue Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Yue Z, Zhang R, Feng N, Yuan X. Uncovering the Differences in Flavour Volatiles from Hybrid and Conventional Foxtail Millet Varieties Based on Gas Chromatography-Ion Migration Spectrometry and Chemometrics. PLANTS (BASEL, SWITZERLAND) 2025; 14:708. [PMID: 40094604 PMCID: PMC11902185 DOI: 10.3390/plants14050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The flavour of foxtail millet (Setaria italica (L.) P. Beauv.) is an important indicator for evaluating the quality of the millet. The volatile components in steamed millet porridge samples were analysed using electronic nose (E-Nose) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques, and characteristic volatile fingerprints were constructed to clarify the differences in the main flavour substances in different foxtail millet varieties (two hybrids and two conventional foxtail millets). After sensory evaluation by judges, Jingu 21 (JG) scored significantly higher than the other varieties, and the others were, in order, Jinmiao K1 (JM), Changzagu 466 (CZ) and Zhangzagu 3 (ZZ). E-Nose analysis showed differences in sulphides and terpenoids, nitrogen oxides, organosulphides and aromatic compounds in different varieties of millet porridge. A total of 59 volatile components were determined by GC-IMS in the four varieties of millet porridge, including 23 aldehydes, 17 alcohols, 9 ketones, 4 esters, 2 acids, 3 furans and 1 pyrazine. Comparative analyses of the volatile components in JG, JM, ZZ and CZ revealed that the contents of octanal, nonanal and 3-methyl-2-butenal were higher in JG; the contents of trans-2-butenal, 2-methyl-1-propanol, trans-2-heptenal and trans-2-pentenal were higher in JM; and the contents of 2-octanone, hexanol, 1-octen-3-ol, 2-pentanone and butyraldehyde were higher in ZZ. The contents of 2-butanol, propionic acid and acetic acid were higher in CZ. A prediction model with good stability was established by orthogonal partial least squares discriminant analysis (OPLS-DA), and 25 potential characteristic markers (VIP > 1) were screened out from 59 volatile organic compounds (VOCs). These volatile components can be used to distinguish the different varieties of millet porridge samples. Moreover, we found conventional foxtail millet contained more aldehydes than the hybridised foxtail millet; especially decanal, 1-nonanal-D, heptanal-D, 1-octanal-M, 1-octanal-D and 1-nonanal-M were significantly higher in JG than in the other varieties. These results indicate that the E-Nose combined with GC-IMS can be used to characterise the flavour volatiles of different foxtail millet, and the results of this study may provide some information for future understanding of the aroma characteristics of foxtail millet and the genetic improvement of hybrid grains.
Collapse
Affiliation(s)
- Zhongxiao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Ruidong Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Naihong Feng
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| |
Collapse
|
3
|
Fonsêca DV, da Silva PR, Pires HFO, Rocha JS, de Oliveira LEG, Reis FMS, Cavalho EBM, Pazos NDN, de Sousa NF, Guedes EC, Ribeiro LR, de Cassia S Sá R, Salvadori MGSS, Sousa DP, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Anticonvulsant activity of Tetrahydrolinalool: behavioral, electrophysiological, and molecular docking approaches. ChemMedChem 2024; 19:e202400135. [PMID: 38687623 DOI: 10.1002/cmdc.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Tetrahydrolinalool (THL) is an acyclic monoterpene alcohol, produced during linalol metabolism and also a constituent of essential oils. As described in the literature, many monoterpenes present anticonvulsant properties, and thus we became interested in evaluating the anticonvulsant activity of Tetrahydrolinalool using in mice model as well as in silico approaches. Our results demonstrated that THL increased latency to seizure onset and also reduced the mortality, in picrotoxin induced seizure tests. The results may be related to GABAergic regulation, which was also suggested in seizure testing induced by 3-mercapto-propionic acid. In the strychnine-induced seizure testing, none of the groups pretreated with THL modulated the parameters indicative of anticonvulsant effect. The electrophysiological results revealed that THL treatment reduces seizures induced by pentylenetetrazole. The in silico molecular docking studies showed that the interaction between THL and a GABAA receptor model formed a stable complex, in comparison to the crystaligraphic structure of diazepam, a structurally related ligand. In conclusion, all the evidences showed that THL presents effective anticonvulsant activity related to the GABAergic pathway, being a candidate for treatment of epileptic syndromes.
Collapse
Affiliation(s)
- Diogo V Fonsêca
- Department: Postgraduate Program in Biosciences - PPGB, Institution: Federal University of Vale do São Francisco - UNIVASF, Petrolina/PE, Brazil
| | - Pablo R da Silva
- Department: Postgraduate Program in Dentistry, Departament of Clinic and Social Dentistry, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Hugo F O Pires
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Juliana S Rocha
- Department: Postgraduate Program in Biosciences - PPGB, Institution: Federal University of Vale do São Francisco - UNIVASF, Petrolina/PE, Brazil
| | - Leandra Eugênia G de Oliveira
- Department: Department of Biological Sciences, Institution: State University of Southwest Bahia (UESB), Rua José Moreira Sobrinho s/n, Jequiezinho, Jequie, BA, 45210-506, Brazil
| | - Flavia M S Reis
- Department: Collegiate of Pharmaceutical Sciences, Postgraduate Program in Health and Biological Sciences, Institution: Federal University of Vale do São Francisco, Petrolina, PE, 56304-917, Brazil
| | - Erika B M Cavalho
- Department: Collegiate of Pharmaceutical Sciences, Postgraduate Program in Health and Biological Sciences, Institution: Federal University of Vale do São Francisco, Petrolina, PE, 56304-917, Brazil
| | - Natalia D N Pazos
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Natália F de Sousa
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Erika C Guedes
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Leandro R Ribeiro
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Rita de Cassia S Sá
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Mirian G S S Salvadori
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Damião P Sousa
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Marcus T Scotti
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Cicero F B Felipe
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Reinaldo N de Almeida
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Luciana Scotti
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
4
|
Yin Z, Maczka M, Schnakenburg G, Schulz S, Dickschat JS. Enantioselective synthesis of all stereoisomers of geosmin and of biosynthetically related natural products. Org Biomol Chem 2024; 22:5748-5758. [PMID: 38920404 DOI: 10.1039/d4ob00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Synthetic routes to geosmin and its enantiomer are well established, but the enantioselective synthesis of stereoisomers of geosmin is unknown. Here a stereoselective synthesis of all stereoisomers of geosmin is reported, yielding all compounds in high enantiomeric purity. Furthermore, the stereoselective synthesis of a geosmin derivative isolated from a mangrove associated streptomycete was performed, establishing the absolute configuration of the natural product. Finally, a new side product of the geosmin synthase from Streptomyces ambofaciens was isolated and its structure was elucidated by NMR spectroscopy. The absolute configuration of this new compound was determined through a stereoselective synthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Michael Maczka
- Institute for Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Stefan Schulz
- Institute for Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
5
|
Li Y, Wei J, Zhu S, Zhou X, Zhou Y, Wang M. Analysis of characteristic aromas of buckwheat with different germplasm using gas chromatography-mass spectrometry combined with chemometrics and multivariate statistical analysis. Food Chem X 2024; 22:101475. [PMID: 38827020 PMCID: PMC11140191 DOI: 10.1016/j.fochx.2024.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
In this study, the volatile components in 40 samples of Tartary buckwheat and common buckwheat from 6 major producing areas in China were analyzed. A total of 77 volatile substances were identified, among which aldehydes and hydrocarbons were the main volatile components. Odor activity value analysis revealed 26 aromatic compounds, with aldehydes making a significant contribution to the aroma of buckwheat. Seven key compounds that could be used to distinguish Tartary buckwheat from common buckwheat were identified. The orthogonal partial least squares-discriminant analysis was effectively used to classify Tartary buckwheat and common buckwheat from different producing areas. This study provides valuable information for evaluating buckwheat quality, breeding high-quality varieties, and enhancing rational resource development.
Collapse
Affiliation(s)
- Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Jianan Wei
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Siyi Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Minglong Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
6
|
Paolini M, Roncone A, Cucinotta L, Sciarrone D, Mondello L, Camin F, Moser S, Larcher R, Bontempo L. Aromatic Characterisation of Moscato Giallo by GC-MS/MS and Validation of Stable Isotopic Ratio Analysis of the Major Volatile Compounds. Biomolecules 2024; 14:710. [PMID: 38927113 PMCID: PMC11201454 DOI: 10.3390/biom14060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Among the Moscato grapes, Moscato Giallo is a winegrape variety characterised by a high content of free and glycosylated monoterpenoids, which gives wines very intense notes of ripe fruit and flowers. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, hotrienol, diendiols, trans/cis-8-hydroxy linalool, geranic acid and myrcene, that give citrus, rose, and peach notes. Except for quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds in grapes and wines are documented in the literature. Nevertheless, the analysis of the stable isotope ratio represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for food quality and genuineness assessment. To this aim, the aromatic compounds extracted from grapes and wine were analysed both by GC-MS/MS, to define the aroma profiles, and by GC-C/Py-IRMS, for a preliminary isotope compound-specific investigation. Seventeen samples of Moscato Giallo grapes were collected during the harvest season in 2021 from two Italian regions renowned for the cultivation of this aromatic variety, Trentino Alto Adige and Veneto, and the corresponding wines were produced at micro-winery scale. The GC-MS/MS analysis confirmed the presence of the typical terpenoids both in glycosylated and free forms, responsible for the characteristic aroma of the Moscato Giallo variety, while the compound-specific isotope ratio analysis allowed us to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time.
Collapse
Affiliation(s)
- Mauro Paolini
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Alberto Roncone
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Lorenzo Cucinotta
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
| | - Danilo Sciarrone
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
| | - Luigi Mondello
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
- Chromaleont s.r.l., Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Federica Camin
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Sergio Moser
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Roberto Larcher
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Luana Bontempo
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| |
Collapse
|
7
|
Nie R, Zhang C, Liu H, Wei X, Gao R, Shi H, Zhang D, Wang Z. Characterization of key aroma compounds in roasted chicken using SPME, SAFE, GC-O, GC-MS, AEDA, OAV, recombination-omission tests, and sensory evaluation. Food Chem X 2024; 21:101167. [PMID: 38420500 PMCID: PMC10900400 DOI: 10.1016/j.fochx.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Aroma compounds in the roasted breasts, thighs and skins of chicken were isolated by solvent-assisted flavor evaporation (SAFE), quantitated by gas chromatography-olfactometry-mass (GC-O-MS), analyzed by aroma extract dilution analysis (AEDA), and determined by recombination-omission tests and sensory evaluation. Forty-seven aroma compounds in total, including aldehydes, ketones, furans, pyrazines, and furanones, were selected by AEDA. Twenty-five compounds were selected as pivotal odorants (Odor Activity Value, OAV ≥ 1). Twenty aroma compounds significantly were identified by recombination and omission experiments. Anethole (fennel odor) was the highest OAV (> 1843). Hexanal (grassy) and (E, E)-2,4-decadienal (meaty) were the most abundant aldehydes identified in roasted chicken. 1-octen-3-ol (mushroom), methanethiol (cabbage) and dimethyl trisulfide (areca, sulfur) were considered the key compounds of the breast and thighs of roasted chicken. Notably, furanone and pyrazines, 4-hydroxy-5-methyl-3(2H)-furanone (caramel, sweet and burning odor), 3-ethyl-2,5-dimethylpyrazine (nutty, toasty) and 2,3-dimethyl-5-ethylpyrazine (nutty, toasty) had the most significant effect on roasted chicken odor, especially in the skin.
Collapse
Affiliation(s)
- Ruotong Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Huan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiangru Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Rongmei Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Haonan Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
8
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Zhang J, Li H, Sun X. Decoding Molecular Mechanism Underlying Human Olfactory Receptor OR8D1 Activation by Sotolone Enantiomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5403-5415. [PMID: 38386648 DOI: 10.1021/acs.jafc.3c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 μg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 μg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 μmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Danqing Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
9
|
Wang Y, Zeng H, Qiu S, Han H, Wang B. Identification of key aroma compounds and core functional microorganisms associated with aroma formation for Monascus-fermented cheese. Food Chem 2024; 434:137401. [PMID: 37696158 DOI: 10.1016/j.foodchem.2023.137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
This study aimed to analyze the key aroma compounds and core functional microorganisms of Monascus-fermented cheese (MC). 36 key aroma compounds were identified according to gas chromatograph-mass spectrometer (GC-MS), aroma extract dilution analysis (AEDA), and odor activity values (OAV) analysis. And internal standard curves were used to clarify the changes in their concentration of them during cheese ripening. Furthermore, High-throughput sequencing was used to investigate the composition and dynamic changes of bacteria and fungi in MC, respectively. Lactococcus lactis was found to be the dominant bacterium while Monascus was confirmed to be the dominant fungus. In addition, Pearson correlation analysis showed that Lactococcus lactis, Staphylococcus, Trichococcus, and Monascus were strongly associated with the 36 key aroma compounds (r > 0.80, p < 0.05). Finally, a metabolic network containing biosynthetic pathways of the key aroma compounds was constructed. This study provides deeper insights into the unique aroma of MC and the contribution of cheese microbiota.
Collapse
Affiliation(s)
- Yadong Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sizhe Qiu
- Department of Engineering Science, University of Oxford, OX1 3PJ, United Kingdom
| | - Haoying Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Auyeskhan U, Azhbagambetov A, Sadykov T, Dairabayeva D, Talamona D, Chan MY. Reducing meat consumption in Central Asia through 3D printing of plant-based protein-enhanced alternatives-a mini review. Front Nutr 2024; 10:1308836. [PMID: 38299187 PMCID: PMC10827926 DOI: 10.3389/fnut.2023.1308836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
3D food printing (3DFP) is emerging as a vital innovation in the food industry's pursuit of sustainability. 3DFP has evolved to significantly impact food production, offering the capability to create customized, nutritionally balanced foods. Central Asia has a higher than global average level of meat consumption per capita, which might be influenced by its historical and cultural background of nomadism. This dietary trend might potentially result in negative impacts on both the environment and human health outcomes, as it leads to increased greenhouse gas emissions and increased risk of chronic diseases. Reducing meat consumption holds the potential to address these sustainability and health issues. A possible strategy to reduce meat consumption and promote plant-based foods is 3D Food Printing (3DFP), which can rely on plant-protein sources from the region to create appealing and tasty alternatives for these populations. This review summarizes recent studies on plant protein-rich materials for 3DFP as a substitute to meet the growing global demand for meat as well as the 3DFP printing parameters associated with the different plant-based proteins currently used (e.g., lentils, soybeans, peas, and buckwheat). The findings revealed that buckwheat, a dietary staple in Central Asia, can be a promising choice for 3DFP technology due to its widespread consumption in the region, gluten-free nature, and highly nutritious profile.
Collapse
Affiliation(s)
- Ulanbek Auyeskhan
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
- Department of Intelligent Systems & Cybersecurity, Astana IT University, Astana, Kazakhstan
| | - Arman Azhbagambetov
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Temirlan Sadykov
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Damira Dairabayeva
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Didier Talamona
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Mei-Yen Chan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
11
|
Wei ZQ, Wang JX, Guo JM, Liu XL, Yan Q, Zhang J, Dong SL. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105619. [PMID: 37945255 DOI: 10.1016/j.pestbp.2023.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Wang Z, Hao W, Wei J, Huang M, Zeng X, Wang Y, Wu J, Chen B. Unveiling innovation in aroma attribute evaluation of Niulanshan Baijiu: An advanced exploration of two different processing methods via food sensory omics and penalty analysis. Food Chem X 2023; 19:100852. [PMID: 37780286 PMCID: PMC10534244 DOI: 10.1016/j.fochx.2023.100852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Niulanshan Baijiu (NLS), a notable variety of Baijiu known for its light flavor and extensive historical legacy, was subjected to a comparative analysis using two different processes: Hunzheng Xucha (HX) and Qingzheng Qingcha (QQ). The study combined sensory-oriented flavor analysis and penalty analysis to assess the differences between the two processes. Aroma compounds in NLS were extracted using liquid-liquid extraction and headspace solid phase microextraction. Gas chromatography-olfactometry-mass spectrometry was employed to identify 46 aroma-active compounds, including the first-time discovery of ethyl isohexanoate and 2,4-nonadienal in NLS. Quantification of 35 compounds with odor activity value (OAV) ≥ 1 was achieved using internal standard curve methods. Sensory assessments by a cohort of 111 participants highlighted the preference for HX-NLS in terms of flavor, while QQ-NLS exhibited a sour-Chen aroma that required improvement. The study further revealed the significant impact of acetic acid, butyric acid, hexanoic acid, octanoic acid, and 3-methylbutanal on the sour-Chen aroma in liquor.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Wenjun Hao
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinan Zeng
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Boru Chen
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| |
Collapse
|
13
|
Yan S, Liu Y, Zhao W, Zhao H, Xue X. Chemical markers of a rare honey from the traditional spice plant Amomum tsao-ko Crevost et Lemarié, via integrated GC-MS and LC-MS approaches. Food Res Int 2023; 172:113234. [PMID: 37689964 DOI: 10.1016/j.foodres.2023.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
The precious medicinal plant, Amomum tsao-ko Crevost et Lemarié, is the nectariferous plant from which the rare Amomum tsao-ko Crevost et Lemarié honey (ATH) is produced. Presently, chemical markers for authentication of this honey are not available due to the lack of data on its chemical composition. Here, we analyzed the volatile components and their odor activity values (OAVs), which revealed that the unique aroma was mildly flowery and fruity, accompanied by subtle sweet and fresh undertones. Since non-volatile chemicals are more reliable markers for routine authentication, we used a metabolomic approach combined with NMR-based identification to find and confirm a suitable compound to unambiguously distinguish ATH from other honeys. Isorhamnetin 3-O-neohesperidoside ranged from 3.62 to 9.38 mg/kg in ATH and was absent in the other tested honeys. In sum, the study uncovered unique chemical characteristics of ATH that will be helpful to control its quality.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yibing Liu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wen Zhao
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongmu Zhao
- Sericultural and Apicultural Research Institute Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan 661101, China.
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Zamaratskaia G, Gerhardt K, Knicky M, Wendin K. Buckwheat: an underutilized crop with attractive sensory qualities and health benefits. Crit Rev Food Sci Nutr 2023; 64:12303-12318. [PMID: 37640053 DOI: 10.1080/10408398.2023.2249112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The pseudocereal buckwheat is one of the ancient domesticated crops. The aim of the present review was to outline the potential of buckwheat as an agricultural crop and brings studies on buckwheat into a new larger perspective combining current knowledge in agricultural history and practice, nutritional and sensory properties, as well as possible benefits to human health. Historically, buckwheat was an appreciated crop because of its short growth period, moderate requirements for growth conditions, and high adaptability to adverse environments. Nowadays, interest in buckwheat-based food has increased because of its nutritional composition and many beneficial properties for human health. Buckwheat is a rich course of proteins, dietary fibers, vitamins, minerals, and bioactive compounds, including flavonoids. Moreover, it contains no gluten and can be used in the production of gluten-free foods for individuals diagnosed with celiac disease, non-celiac gluten sensitivity, or wheat protein allergies. Buckwheat is traditionally used in the production of various foods and can be successfully incorporated into various new food formulations with positive effects on their nutritional value and attractive sensory properties. Further research is needed to optimize buckwheat-based food development and understand the mechanism of the health effects of buckwheat consumption on human well-being.
Collapse
Affiliation(s)
- Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| | - Karin Gerhardt
- Swedish Biodiversity Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Knicky
- Bioeconomy and Health, Agriculture and Food, RISE Research Institutes of Sweden, Uppsala, Sweden
| | - Karin Wendin
- Research Environment MEAL, Faculty of Natural Science, Kristianstad University, Kristianstad, Sweden
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Chai Y, Yu Y, Zhu H, Li Z, Dong H, Yang H. Identification of common buckwheat ( Fagopyrum esculentum Moench) adulterated in Tartary buckwheat ( Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics. Curr Res Food Sci 2023; 7:100573. [PMID: 37650007 PMCID: PMC10463190 DOI: 10.1016/j.crfs.2023.100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) presents great potential in the identification of food adulteration due to its advantages of nondestructive, simple, and easy to operate. In this paper, a method based on NIRS and chemometrics was proposed to predict the content of common buckwheat (Fagopyrum esculentum Moench) flour in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour. Partial least squares regression (PLSR) and support vector regression (SVR) models were used to analyze the spectrum data of adulterated samples and predict the adulteration level. Various preprocessing methods, parameter-optimization methods, and competitive adaptive reweighted sampling (CARS) wavelength-selection methods were used to optimize the model prediction accuracy. The results of PLSR and SVR modeling for predicting of Tartary buckwheat adulteration content were satisfactory, and the correlation coefficients of the optimum identification models were above 0.99. In conclusion, the combinations of NIRS and chemometrics indicated excellent predictive performance and applicability to analyze the adulteration of common buckwheat flour in Tartary buckwheat flour. This work provides a promising method to identify the adulteration of Tartary buckwheat flour and results obtained can give theoretical and data support for adulteration identification of agro-products.
Collapse
Affiliation(s)
- Yinghui Chai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hui Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Liyang Tianmu Lake Agricultural Development Co., Ltd., Liyang, 213333, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang, 312000, China
| |
Collapse
|
16
|
Chemical Profile and Hematoprotective Activity of Artisanal Jabuticaba (Plinia jabuticaba) Wine and Derived Extracts. FERMENTATION 2023. [DOI: 10.3390/fermentation9020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alcoholic fermentation of jabuticaba berries (Plinia spp.) originates from a beverage with an intense taste and aroma, popularly known as jabuticaba wine (JW). In addition, polyphenols transferred from fruit peels to the final product turn this beverage into a promising source of bioactive agents. Here, the chemical profile and antioxidant potential of artisanal JW and derivative extracts were determined. Volatile organic compounds were determined by HS-SPME/GC-MS analysis. The wine was dried by lyophilization and subjected to liquid-liquid partitioning (water: ethyl acetate), resulting in three fractions (JWF1-3). ABTS•+ and DPPH•+ scavenging assays were performed to evaluate the antioxidant capacity. In addition, the extracts’ hematoprotective activity was evaluated against oxidative stress. Finally, the extracts were analyzed by LC-HRMS/MS. HS-SPME/GC-MS analysis highlighted 1,8-cineole as the main compound that contributes to the camphor/mint flavor. JWF2 and JWF3 displayed the highest antioxidant capacity. JWF2 stood out for preventing oxidative damage in red blood cells at 7.8 µg·mL−1 The maximal protection of ascorbic acid occurred at 8.8 µg·mL−1. The LC-HRMS/MS analysis allowed the annotation of seventeen compounds, most of them with recognized antioxidant activity such as anthocyanins, catechins, flavanols, and phenolic acids. The results presented herein reinforce JW as a pleasant beverage with bioactive potential.
Collapse
|
17
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
18
|
Li Z, Qin C, He X, Chen B, Tang J, Liu G, Li L, Yang Y, Ye D, Li J, Ling D, Li C, Khoo HE, Sun J. Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities. Antioxidants (Basel) 2022; 12:93. [PMID: 36670954 PMCID: PMC9854660 DOI: 10.3390/antiox12010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
This study aimed to develop functional fruit wines using whole fruit, pulp, and peels from green bananas. The boiled banana homogenates were mixed with cane sugar before wine fermentation. Quality parameters, phenolic compounds, flavor components, and antioxidative properties of the green banana peel wine (GBPW), green banana pulp wine (GBMW), and whole banana wine (GBW) were determined. High-performance liquid chromatography was used to determine the phytochemical compounds in three wines, and the flavor components were further analyzed using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. The flavor components and in vitro antioxidant activities were, respectively, determined using the relative odor activity value and the orthogonal projections on latent structure discrimination analysis (OPLS-DA). In vitro antioxidative capacities for these wines were evaluated using antioxidant chemical assays and cell culture methods. The total phenolic and total tannin content of the GBPW, GBMW, and GBW showed reducing trends with increasing fermentation days, whereas the total flavonoid content of the wine samples exhibited downward trends. The antioxidant capacities of the three wine samples were higher than those of the raw fruit samples, except for the metal chelation rate (%). Additionally, the main flavor component in the wine samples was 3-methyl-1-butanol. Its percentages in the GBPW, GBMW, and GBW were 72.02%, 54.04%, and 76.49%, respectively. The OPLS-DA results indicated that the three wines presented significantly different antioxidant activities. The cell-culture-based antioxidant analysis showed that these wine samples had protective effects against the oxidative stress of the 3T3-L1 preadipocytes induced by hydrogen peroxide. This study provided a theoretical basis for defining the antioxidant characteristics of banana wines and expanding novel channels for using banana peels to develop nutraceuticals.
Collapse
Affiliation(s)
- Zhichun Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Cuina Qin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Xuemei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Bojie Chen
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jie Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Ying Yang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Dongqing Ye
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Jiemin Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Dongning Ling
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Hock Eng Khoo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jian Sun
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| |
Collapse
|
19
|
Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities. Antioxidants (Basel) 2022. [PMID: 36670954 DOI: 10.3390/antiox11050879/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This study aimed to develop functional fruit wines using whole fruit, pulp, and peels from green bananas. The boiled banana homogenates were mixed with cane sugar before wine fermentation. Quality parameters, phenolic compounds, flavor components, and antioxidative properties of the green banana peel wine (GBPW), green banana pulp wine (GBMW), and whole banana wine (GBW) were determined. High-performance liquid chromatography was used to determine the phytochemical compounds in three wines, and the flavor components were further analyzed using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. The flavor components and in vitro antioxidant activities were, respectively, determined using the relative odor activity value and the orthogonal projections on latent structure discrimination analysis (OPLS-DA). In vitro antioxidative capacities for these wines were evaluated using antioxidant chemical assays and cell culture methods. The total phenolic and total tannin content of the GBPW, GBMW, and GBW showed reducing trends with increasing fermentation days, whereas the total flavonoid content of the wine samples exhibited downward trends. The antioxidant capacities of the three wine samples were higher than those of the raw fruit samples, except for the metal chelation rate (%). Additionally, the main flavor component in the wine samples was 3-methyl-1-butanol. Its percentages in the GBPW, GBMW, and GBW were 72.02%, 54.04%, and 76.49%, respectively. The OPLS-DA results indicated that the three wines presented significantly different antioxidant activities. The cell-culture-based antioxidant analysis showed that these wine samples had protective effects against the oxidative stress of the 3T3-L1 preadipocytes induced by hydrogen peroxide. This study provided a theoretical basis for defining the antioxidant characteristics of banana wines and expanding novel channels for using banana peels to develop nutraceuticals.
Collapse
|
20
|
Chen P, Liu Y, Wu J, Yu B, Zhao H, Huang M, Zheng F. Sensory-directed decoding of key aroma compounds from Jiugui-series Baijiu, the representative of Fuyu-flavor-type Baijiu (FFTB). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
22
|
Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to its ornamental and medicinal value, pear flower has been historically loved and used in China. However, the current understanding of their odor-active compounds and aroma profiles is rather limited. This work aimed to evaluate and compare the overall aroma profile of pear flowers; the volatiles in flowers of seven pear cultivars (Anli, Bayuesu, Golden, Brown peel, KorlaXiangli, Lyubaoshi, Xizilü) were analyzed using solid-phase microextraction–gas chromatography-mass spectrometry (SPME-GC-MS). A total of 93 volatile compounds were identified and quantified within the amount of volatiles in the range of 62.7–691.8 μg kg−1 (FW) and showed high and significant variability in different cultivars. Anli and Brown peel flowers showed a relatively higher volatile abundance, while KorlaXiangli flowers were significantly lower than other cultivars. Although the composition of volatiles depended on the existence of different chemical classes, the odor activity values (OAVs) and odor descriptions showed some aldehydes were part of their main peculiarities and were considered as the basic active odorants that presented strong intensity of citrus and floral odor. Moreover, multivariate analysis showed the pear flower of different cultivars could be arranged in different clusters by the identified odorants. This study provides first-hand knowledge regarding pear flower aroma profiles, and that the cultivar differences were critical for the overall pattern.
Collapse
|