1
|
Wang Y, Wang C, Liu W, Huang Q, Xiao W. Niemann-Pick C2 proteins play crucial role in perception of plant volatiles in Tetranychus cinnabarinus. PEST MANAGEMENT SCIENCE 2025. [PMID: 40343673 DOI: 10.1002/ps.8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Herbivorous mites perceive odorants through olfactory mechanisms, though the molecular basis of olfaction in these species remains poorly understood. Recent studies have identified Niemann-Pick C2 (NPC2) proteins as odorant carriers in the peripheral olfactory systems of insects. Multiple NPC2 genes have been discovered in spider mite genomes, yet their specific roles in olfactory function have not been fully explored. RESULTS Behavioral assays showed that 8 of the 12 tested plant volatiles elicited either repellent or attractive responses in Tetranychus cinnabarinus. Two NPC2 genes were identified as responsive to odorant stimulation. Recombinant NPC2 proteins were produced, and microscale thermophoresis (MST) assays revealed specific binding: TcinNPC2-2 bound to geranylacetone [dissociation constant (Kd) = 3.32 μm], and TcinNPC2-3 bound to farnesol (Kd = 9.55 μm). Knockdown of NPC2 genes via RNA interference abolished mite responses to these odorants in behavioral assays. CONCLUSIONS Mite olfactory responses to a number of odorants were widely documented. NPC2-2 and NPC2-3 proteins play critical roles in the olfactory detection of geranylacetone and farnesol, respectively. This study enhances our understanding of the peripheral olfactory processes in herbivorous mites, offering insights for the development of behavior-targeting agents for mite control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Wang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Chenglong Wang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Wenchengxin Liu
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Qianqian Huang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Wei Xiao
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Yang JC, Zhang JP, Wu CY, Bai Y, Guedes RNC, Dewer Y, Li FQ, Zang LS. Diversity and role of volatile terpene and terpenoid pheromones in insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:9-18. [PMID: 39578941 DOI: 10.1093/jee/toae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Insect pheromones are critical chemical signals that regulate intraspecific behavior and play a key role in the dynamic monitoring and control of pest populations. Historically, research on insect pheromones has primarily focused on lipid-based compounds. However, terpenes and terpenoids, which are widely occurring classes of bioactive compounds, also play significant roles in insect pheromone blends. Over 50 terpene and terpenoid-based pheromones have been identified in over 52 insect species, spanning various orders such as Coleoptera, Hymenoptera, Blattodea, Hemiptera, Diptera, and Lepidoptera. These compounds are associated with several types of pheromones, including female or male sex pheromones, aggregation pheromones, alarm pheromones, and aphrodisiac pheromones. Terpenes and terpenoids may act as either primary or secondary components of pheromone blends and influence a wide range of critical insect behaviors. They play essential roles in the physiological and ecological adaptation of insects to their environment. This review provides a comprehensive overview of current research on terpene and terpenoid-based pheromones in insects, examining their structures, types, and physiological and ecological functions. Additionally, we propose future research directions to guide the application of these pheromones in insect behavioral regulation and pest management, while advocating for their broader use in insect pest monitoring and control.
Collapse
Affiliation(s)
- Jiu-Chun Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin-Ping Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Yan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yun Bai
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Raul Narciso C Guedes
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Feng-Qi Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Li WZ, Dewer Y, Shi SL, Shang SQ, Kang WJ. The olfactory recognition between leaf-cutter bee Megachile saussurei and alfalfa floral volatiles mediated by odorant binding protein 4 (MsauOBP4). Int J Biol Macromol 2025; 287:138332. [PMID: 39653222 DOI: 10.1016/j.ijbiomac.2024.138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Megachile saussurei (Hymenoptera, Megachilidae) is a primary insect pollinator of alfalfa (Medicago sativa L.) in northwestern China. However, the mechanisms underlying the olfactory responses of M. saussurei induced by alfalfa volatiles is still unclear. Here, the interaction between MsauOBP4 and alfalfa floral volatiles was first elucidated. Results suggested that thirty-two alfalfa floral volatiles were identified and MsauOBP4 was successfully expressed with the consistent molecular mass as predicted results. MsauOBP4 displayed a broad binding spectrum to 32 volatiles, among which MsauOBP4 showed the strongest binding ability to (Z)-3-Hexen-1-ol. In the Y-tube olfactometer behavioral bioassay, M. saussurei elicited the most significant behavioral preference (Z)-3-Hexen-1-ol. MsauOBP4 showed an optimal binding feature to (Z)-3-Hexen-1-ol and valine was the key residue in binding the ligands. After silencing the MsauOBP4, the preference and EAG values of M. saussurei to (Z)-3-Hexen-1-ol were significantly decreased and selection rate of M. saussurei to alfalfa flowers dropped to 57.50 % from 83.33 %. These findings indicated that (Z)-3-Hexen-1-ol is a crucial component in the host location process mediated by MsauOBP4.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Dokki, Egypt.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Su-Qin Shang
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China.
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Cao X, Huang M, Wang S, Li T, Huang Y. Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108812. [PMID: 38875781 DOI: 10.1016/j.plaphy.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.
Collapse
Affiliation(s)
- Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Mengna Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Shimei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
5
|
Xiao Y, Wu Y, Lei C, Yin F, Peng Z, Jing X, Zhang Y, Li Z. Ligand binding properties of three odorant-binding proteins in striped flea beetle Phyllotreta striolata towards two phthalate esters. INSECT MOLECULAR BIOLOGY 2024; 33:405-416. [PMID: 38478920 DOI: 10.1111/imb.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 07/10/2024]
Abstract
Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 μM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 μM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Yuhong Wu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Chunmei Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Zhengke Peng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| |
Collapse
|
6
|
Wang WW, Han KR, Jing XF, Liu TX, Zhang SZ. Odorant-binding protein CrufOBP1 in Cotesia ruficrus females plays a pivotal role in the detection of Spodoptera frugiperda larvae. Int J Biol Macromol 2024; 274:133491. [PMID: 38944096 DOI: 10.1016/j.ijbiomac.2024.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cotesia ruficrus presents a promising local natural enemy for controlling the invasive fall armyworm Spodoptera frugiperda in China. However, the mechanisms underlying how C. ruficrus locates its target pest remain unclear. In this study, we analyzed the expression patterns of 18 CrufOBPs across different developmental stages of C. ruficrus, and found that CrufOBP1 exhibited consistent and high expression levels in female adults. CrufOBP1 transcript was predominantly localized in sensilla placodea and sensilla trichodea on the antennae. Additionally, we confirmed the binding properties of CrufOBP1 protein to various cuticular compounds of S. frugiperda larvae. Subsequent electroantennogram and behavioral assays revealed that 1-(2-hydroxy-5-methylphenyl)-ethanone attracted female C. ruficrus, consequently increased the parasitism rate. However, upon silencing CrufOBP1, females exhibited reduced attraction towards 1-(2-hydroxy-5-methylphenyl)-ethanone, indicating the crucial role of CrufOBP1 in the chemoreception of C. ruficrus. These findings shed light on the kairomone-based mechanism employed by C. ruficrus to locate S. frugiperda larvae and hold a promise for the development of environmentally friendly pest management strategies.
Collapse
Affiliation(s)
- Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiang-Feng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Yuan W, Rao X, Zhong B, Chen M, Ali H, Lv C, Niu C. Exploring the functional profiles of odorant binding proteins crucial for sensing key odorants in the new leaves of coconut palms in Rhynchophorus ferrugineus. Int J Biol Macromol 2024; 261:129852. [PMID: 38307432 DOI: 10.1016/j.ijbiomac.2024.129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Curculionidae: Coleoptera) is a highly destructive global pest of coconut trees, with a preference for laying its eggs on new leaves. Females can identify where to lay eggs by using their sense of smell to detect specific odorants found in new leaves. In this study, we focused on the two odorants commonly found in new leaves by GC-MS: trans, trans-2,4-nonadienal and trans-2-nonenal. Our behavioral assays demonstrated a significant attraction of females to both of these odorants, with their electrophysiological responses being dose-dependent. Furthermore, we examined the expression patterns induced by these odorants in eleven RferOBP genes. Among them, RferOBP3 and RferOBP1768 exhibited the most significant and simultaneous upregulation. To further understand the role of these two genes, we conducted experiments with females injected with OBP-dsRNA. This resulted in a significant decrease in the expression of RferOBP3 and RferOBP1768, as well as impaired the perception of the two odorants. A fluorescence competitive binding assay also showed that both RferOBPs strongly bound to the odorants. Additionally, sequence analysis revealed that these two RferOBPs belong to the Minus-C family and possess four conserved cysteines. Molecular docking simulations showed strong interactions between these two RferOBPs and the odorant molecules. Overall, our findings highlight the crucial role of RferOBP3 and RferOBP1768 in the olfactory perception of the key odorants in coconut palm new leaves. This knowledge significantly improves our understanding of how RPW females locate sites for oviposition and lays the foundation for future research on the development of environmentally friendly pest attractants.
Collapse
Affiliation(s)
- Weiqin Yuan
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinjie Rao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; New Horizon Health Co., Ltd., Hangzhou 310051, China
| | - Baozhu Zhong
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China
| | - Mengran Chen
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information technology, Rahim Yar Khan 64200, Pakistan
| | - Chaojun Lv
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China.
| | - Changying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Wei Y, Gao L, Zhang Z, Li K, Zhang Z, Zhang D, Chen J, Peng J, Gao Y, Du J, Yan S, Shi X, Liu Y. D-Limonene Affects the Feeding Behavior and the Acquisition and Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci. Viruses 2024; 16:300. [PMID: 38400075 PMCID: PMC10891612 DOI: 10.3390/v16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.
Collapse
Affiliation(s)
- Yan Wei
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
- Yuelushan Laboratory, Changsha 410215, China
| | - Liming Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Zhanhong Zhang
- Institute of Vegetable Crops, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Kailong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
| | - Xiaobin Shi
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
- Yuelushan Laboratory, Changsha 410215, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.W.); (L.G.); (K.L.); (Z.Z.); (D.Z.); (J.C.); (J.P.); (Y.G.); (J.D.); (S.Y.)
- Yuelushan Laboratory, Changsha 410215, China
| |
Collapse
|
9
|
Li F, Tian J, Di Z, Qu C, Fu Y, Yang S, Luo C. Orco mediates olfactory behavior and oviposition in the whitefly Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105773. [PMID: 38458680 DOI: 10.1016/j.pestbp.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.
Collapse
Affiliation(s)
- Fengqi Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jiahui Tian
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zhongjuan Di
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Shiyong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China.
| | - Chen Luo
- College of Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
10
|
Wang Y, Bian XK, Zhang L, Chen WY, Lyu QJ, Du SS. The essential oil of Kochia scoparia (L.) Schrad. as a potential repellent against stored-product insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124416-124424. [PMID: 37996575 DOI: 10.1007/s11356-023-31011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Chemical composition of the essential oil from Kochia scoparia (L.) Schrad. (syn. Bassia scoparia (L.) A. J. Scott) was analyzed in quality and quantity by GC-MS and GC-FID. Repellent activities of the essential oil from K. scoparia (KSEO) were evaluated against two common species of stored-product insects Tribolium castaneum Herbst and Liposcelis bostrychophila Badonnel. Results indicated that KSEO mainly consisted of eugenol, β-caryophyllene, and α-humulene, accounting for 75.6%, 8.2%, and 1.4% of the total oil, respectively. KSEO and the three major components were repellent to T. castaneum and L. bostrychophila adults. Notably, KSEO exerted significant effects, comparable to the positive control DEET at 2 and 4 h post-exposure. Eugenol at 63.17-2.53 nL/cm2 exhibited high percentage repellency ranging from 96 to 70% against L. bostrychophila during 4-h exposure. To gain further insights into the repellent activity, molecular docking simulation was performed with eugenol as the ligand and an odorant binding protein TcOBPC12 (gene: TcOBP10B) from the model insect T. castaneum as the receptor. Docking calculation results revealed that TcOBPC12 had binding affinity to eugenol (△G = - 4.52 kcal/mol) along with a hydrogen bond of 0.18 nm (1.8 Å) long forming between them, which could be an important target protein associated with identifying volatile repellent molecules. This work highlights the promising potential of KSEO as a botanical repellent for controlling stored-product insects.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Kun Bian
- Department of Pharmacy, Yancheng No.1 People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Li Zhang
- Department of Nursing, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Wen-Yan Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qiu-Ju Lyu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Wu D, Wang L, Li W, Li X. Identifying a New Target for BtOBP8: Discovery of a Small Amino Ketone Molecule Containing Benzothiazole Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17635-17645. [PMID: 37651643 DOI: 10.1021/acs.jafc.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insects rely on odorant-binding proteins (OBPs) for chemical perception, making OBPs a promising target for studying attractants and repellents of pests, such as Bemisia tabaci. However, no reports have reported using B. tabaci OBPs (BtOBPs) as pesticide screening targets. To fill this gap, we obtained BtOBP8 through prokaryotic expression and purification. Then, we confirmed its identity using western blotting and mass spectrometry. Next, we used the sitting drop and hanging drop methods to screen its crystal conditions. Using microscale thermophoresis and isothermal titration calorimetry, we identified the highest affinity ligand, 3l, from 30 compounds. Furthermore, point mutation techniques identified Val119 as a key amino acid residue in binding 31 to BtOBP8. Finally, we tested the bioactivity of B. tabaci Mediterranean and found that 3l more effectively inhibits the bioactivity of B. tabaci MED than imidacloprid. This study presents a new approach for developing green insecticides specific to B. tabaci MED by targeting OBPs. Conclusively, identifying and targeting specific OBPs can create more targeted and effective pest control strategies without relying on toxic chemicals.
Collapse
Affiliation(s)
- Danxia Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Li ET, Wu HJ, Qin JH, Luo J, Li KB, Cao YZ, Zhang S, Peng Y, Yin J. Involvement of Holotrichia parallela odorant-binding protein 3 in the localization of oviposition sites. Int J Biol Macromol 2023; 242:124744. [PMID: 37148950 DOI: 10.1016/j.ijbiomac.2023.124744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Organic fertilizers-derived volatiles attract Holotrichia parallela during oviposition. However, the mechanisms underlying the perception of oviposition cues in H. parallela remain unclear. Here, H. parallela odorant-binding protein 3 (HparOBP3) was identified as a key OBP. Bioinformatics analysis showed that HparOBP3 clustered together with Holotrichia oblita OBP8. HparOBP3 was mainly expressed in the antennae of both sexes. Recombinant HparOBP3 exhibited distinct binding affinities towards 22 compounds released by organic fertilizers. After 48 h of RNA interference (RNAi), the expression of HparOBP3 in male and female antennae was decreased by 90.77 % and 82.30 %, respectively. In addition, silencing of HparOBP3 significantly reduced the electrophysiological responses and tropism of males to cis-3-hexen-1-ol, 1-hexanol, and (Z)-β-ocimene as well as females to cis-3-hexen-1-ol, 1-hexanol, benzaldehyde, and (Z)-β-ocimene. Molecular docking indicated that hydrophobic residues Leu-83, Leu-87, Phe-108, and Ile-120 of HparOBP3 were important amino acids for interacting with ligands. Mutation of the key residue, Leu-83, significantly diminished the binding ability of HparOBP3. Furthermore, acrylic plastic arena bioassays showed that the attraction and oviposition indexes of organic fertilizers to H. parallela were reduced by 55.78 % and 60.11 %, respectively, after silencing HparOBP3. These results suggest that HparOBP3 is essential in mediating the oviposition behavior of H. parallela.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Jian-Hui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Jing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
13
|
He H, Li J, Zhang Z, Yan M, Zhang B, Zhu C, Yan W, Shi B, Wang Y, Zhao C, Yan F. A plant virus enhances odorant-binding protein 5 (OBP5) in the vector whitefly for more actively olfactory orientation to the host plant. PEST MANAGEMENT SCIENCE 2023; 79:1410-1419. [PMID: 36480018 DOI: 10.1002/ps.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a notorious agricultural pest and the effective vector of many plant viruses worldwide. Cucurbit chlorotic yellows virus (CCYV), exclusively transmitted by B. tabaci in a semipersistent manner, is a serious causal agent in cucurbit crops in many countries. Plant viruses can manipulate the behaviors of insect vectors to promote the spread of themselves, but underlying mechanisms are remaining unclear. RESULTS In this study, our observations indicated that B. tabaci, when carrying CCYV, oriented more actively to the host plant cucumber. Transcriptome analysis and quantitative polymerase chain reaction with reverse transcription analysis showed that the odorant-binding protein 5 (OBP5) was upregulated with viral acquisition. Sequence and phylogenetic analysis showed that BtabOBP5 was highly homologous with nine OBPs from other hemipteran insects. In addition, OBP5-silenced whiteflies significantly altered their orientation behavior towards cucumber plants and towards some typical volatile organic compounds released from cucumbers. CONCLUSION This study described a novel mechanism by which the olfactory system of vector insects could be regulated by a semipersistent plant virus, thereby affecting insect olfactory behavior and relationship with host plants. These results provided a basis for developing potential olfaction-based pest management strategies in the future. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Beibei Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chaoqiang Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weili Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaxin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
15
|
Zhang L, Zhao M, Aikeremu F, Huang H, You M, Zhao Q. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii. Front Physiol 2023; 13:1068543. [PMID: 36685201 PMCID: PMC9845707 DOI: 10.3389/fphys.2022.1068543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules, which are believed to be involved in insect chemoreception. Here, we investigated three CSPs in perception of volatiles in Empoasca onukii. Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and abdomen, they were all highly expressed in the antennae of E. onukii. Further, fluorescence competitive binding assays revealed that EonuCSP4 and 6-1 had binding affinities for three plant volatiles, suggesting their possible involvement in the chemosensory process. Among them, EonuCSP6-1 showed relatively high binding affinities for benzaldehyde. Behavioral assays revealed that the adults of E. onukii showed a significant preference for two compounds including benzaldehyde. The predicted three-dimensional (3D) structures of these 3 CSP have the typical six α-helices, which form the hydrophobic ligand-binding pocket. We therefore suggest that Eoun6-1 might be involved in the chemoreception of the host-related volatiles for E. onukii. Our data may provide a chance of finding a suitable antagonist of alternative control strategies which block the perception of chemosensory signals in pest, preventing the food- orientation behaviors.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Mingxian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Feiruoran Aikeremu
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huoshui Huang
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| |
Collapse
|
16
|
Li F, Di Z, Tian J, Dewer Y, Qu C, Yang S, Luo C. Silencing the gustatory receptor BtGR11 affects the sensing of sucrose in the whitefly Bemisia tabaci. Front Bioeng Biotechnol 2022; 10:1054943. [PMID: 36452214 PMCID: PMC9702514 DOI: 10.3389/fbioe.2022.1054943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2023] Open
Abstract
RNA interference (RNAi) is powerful biotechnology for studying the in vivo functions of key genes. Based on this property, RNAi can also be used for pest control as an effective alternative to chemical pesticides. The management of phloem-sucking pests is a tricky issue in current agricultural and forestry pest control. RNAi can silence key chemoreceptor genes of phloem-sucking pests; thereby regulating the behavior of these pests can be manipulated. So, it is considered to be a promising new type of ecological pest management strategy. In this study, we identified a candidate taste receptor gene, BtGR11, that controls the taste sensitivity to sucrose in the whitefly Bemisia tabaci, which is a serious invasive phloem-sucking pest worldwide. Functional analyses using the Xenopus oocyte expression system and the two-electrode voltage-clamp system revealed that the oocytes expressing BtGR11 responded to sucrose. Furthermore, we found that silencing BtGR11 by RNAi inhibited the function of sensing sucrose in the whitefly. This study reports a key chemoreceptor gene that can be used for the understanding of the gustatory sensing mechanisms of whitefly to deterrent.
Collapse
Affiliation(s)
- Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhongjuan Di
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jiahui Tian
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shiyong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
The Entomopathogenic Fungus Metarhizium anisopliae Affects Feeding Preference of Sogatella furcifera and Its Potential Targets’ Identification. J Fungi (Basel) 2022; 8:jof8050506. [PMID: 35628761 PMCID: PMC9147605 DOI: 10.3390/jof8050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The rice planthopper Sogatella furcifera is a unique vector of the southern rice black-streaked dwarf virus (SRBSDV). The feeding behavior of S. furcifera should directly affect the diffusion of this virus. In this study, we noted that the infection of Metarhizium anisopliae CQMa421 on S. furcifera disturbed the feeding behavior of this pest to SRBSDV-infected rice, from preference to non-preference. Then, we further investigated the potential targets of M. anisopliae CQMa421 on the feeding behavior of S. furcifera after 0 h, 24 h and 48 h of infection by transcriptomic analysis via Illumina deep sequencing. A total of 93.27 GB of data was collected after sequencing, from which 91,125 unigenes were annotated, including 75 newly annotated genes. There were 1380 vs. 2187 and 137 vs. 106 upregulated and downregulated differentially expressed genes (DEGs) detected at 24 h and 48 h, respectively. The biological functions and associated metabolic processes of these genes were determined with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results suggested that major of DEGs are involved in energy metabolism, biosynthesis, immune response, the FoxO signaling pathway, the MAPK signaling pathway and apoptosis in response to the fungal infection. Noteworthily, several olfactory-related genes, including odorant receptors and odorant binding proteins, were screened from these differentially expressed genes, which played critical roles in regulating the olfactory behavior of insects. Taken together, these results provide new insights for understanding the molecular mechanisms underlying fungus and host insect interaction, especially for olfactory behavior regulated by fungus.
Collapse
|