1
|
Kutraite I, Augustiniene E, Malys N. Hydroxybenzoic acids: Microbial metabolism, pathway engineering and products. Biotechnol Adv 2025; 81:108571. [PMID: 40154763 DOI: 10.1016/j.biotechadv.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Hydroxybenzoic acids (HBAs) are plant secondary metabolites exhibiting antioxidant, antiviral, anticancer and antibacterial activities. A high and constantly increasing demand for these compounds underlines the need for novel and efficient production methods, as commonly applied plant extraction and chemical synthesis approaches are susceptible to low yields and are environmentally hazardous. Switching to biotechnology and replacing petroleum-based chemicals has potential to improve eco-efficiency in sustainable bioeconomy. With the increased focus on the production of materials using renewable resources and bio-based feedstocks, microbial fermentation and engineering drives the development and optimization of sustainable bioproduction. This systematic review summarizes current knowledge of microbial HBAs metabolism and biosynthesis. Here, the existing challenges are highlighted and the potential strategies for improved microbial production of HBAs are identified. Key aspects of HBAs metabolism and complexity of the factors related to bacterial strain selection, titer, and bioprocess strategy are examined. The opportunities of HBAs bioproduction using engineered microbial cell factories are discussed in detail and insights for synthesis improvement are presented.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
2
|
Suboktagin S, Ullah MW, Sethupathy S, Keerio HA, Alabbosh KF, Khan KA, Zhu D. Microbial cell factories for bioconversion of lignin to vanillin - Challenges and opportunities: A review. Int J Biol Macromol 2025; 309:142805. [PMID: 40187450 DOI: 10.1016/j.ijbiomac.2025.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The bioconversion of lignin into vanillin via microbial cell factories offers a promising and sustainable route for producing high-value aromatic compounds from the abundant and underutilized byproducts of plant biomass. This review comprehensively explores the synthesis, structural characteristics, and diverse industrial applications of lignin, while addressing the inherent challenges posed by its complex structure in bioconversion processes. It examines the potential of microbial cell factories for lignin degradation, emphasizing the latest advancements in genetic engineering and metabolic optimization strategies that enhance microbial efficiency in lignin degradation and vanillin biosynthesis. It further assesses the economic feasibility of lignin-to-vanillin conversion by discussing key factors influencing cost-effectiveness and scalability, highlighting the transformative potential for producing high-value aromatic compounds in an environmentally sustainable manner. The review also highlights ongoing research efforts to develop robust microbial strains and optimize metabolic pathways for improved vanillin yield. By integrating multidisciplinary approaches, this review highlights the transformative potential of microbial cell factories to valorize lignin, offering a sustainable pathway for the production of vanillin and related aromatic compounds.
Collapse
Affiliation(s)
- Sultan Suboktagin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hareef Ahmed Keerio
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Hu G, Gao C, Li X, song W, Wu J. Microbial engineering for monocyclic aromatic compounds production. FEMS Microbiol Rev 2025; 49:fuaf003. [PMID: 39900471 PMCID: PMC11837758 DOI: 10.1093/femsre/fuaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025] Open
Abstract
Aromatic compounds serve pivotal roles in plant physiology and exhibit antioxidative and antimicrobial properties, leading to their widespread application, such as in food preservation and pharmaceuticals. However, direct plant extraction and petrochemical synthesis often struggle to meet current needs due to low yield or facing economic and environmental hurdles. In the past decades, systems metabolic engineering enabled eco-friendly production of various aromatic compounds, with some reaching industrial levels. In this review, we highlight monocyclic aromatic chemicals, which have relatively simple structures and are currently the primary focus of microbial synthesis research. We then discuss systems metabolic engineering at the enzyme, pathway, cellular, and bioprocess levels to improve the production of these chemicals. Finally, we overview the current limitations and potential resolution strategies, aiming to provide reference for future studies on the biosynthesis of aromatic products.
Collapse
Affiliation(s)
- Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants (Basel) 2024; 13:853. [PMID: 39061921 PMCID: PMC11273498 DOI: 10.3390/antiox13070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also plays an important role in anti-cancer, pro-angiogenesis, anti-thrombosis, neuroprotection, food preservation, anti-aging, and improving the antioxidant performance of livestock and poultry. This review provides a comprehensive summary of the structure, mechanism of antioxidation, application status, molecular mechanism of pharmacological activity, existing problems, and application prospects of ferulic acid and its derivatives. The aim is to establish a theoretical foundation for the utilization of ferulic acid in medicine, food, cosmetics, livestock, and poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Fujimaki S, Sakamoto S, Shimada S, Kino K, Furuya T. Engineering a coenzyme-independent dioxygenase for one-step production of vanillin from ferulic acid. Appl Environ Microbiol 2024; 90:e0023324. [PMID: 38727223 PMCID: PMC11218615 DOI: 10.1128/aem.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
Vanillin is one of the world's most important flavor and fragrance compounds used in foods and cosmetics. In plants, vanillin is reportedly biosynthesized from ferulic acid via the hydratase/lyase-type enzyme VpVAN. However, in biotechnological and biocatalytic applications, the use of VpVAN limits the production of vanillin. Although microbial enzymes are helpful as substitutes for plant enzymes, synthesizing vanillin from ferulic acid in one step using microbial enzymes remains a challenge. Here, we developed a single enzyme that catalyzes vanillin production from ferulic acid in a coenzyme-independent manner via the rational design of a microbial dioxygenase in the carotenoid cleavage oxygenase family using computational simulations. This enzyme acquired catalytic activity toward ferulic acid by introducing mutations into the active center to increase its affinity for ferulic acid. We found that the single enzyme can catalyze not only the production of vanillin from ferulic acid but also the synthesis of other aldehydes from p-coumaric acid, sinapinic acid, and coniferyl alcohol. These results indicate that the approach used in this study can greatly expand the range of substrates available for the dioxygenase family of enzymes. The engineered enzyme enables efficient production of vanillin and other value-added aldehydes from renewable lignin-derived compounds. IMPORTANCE The final step of vanillin biosynthesis in plants is reportedly catalyzed by the enzyme VpVAN. Prior to our study, VpVAN was the only reported enzyme that directly converts ferulic acid to vanillin. However, as many characteristics of VpVAN remain unknown, this enzyme is not yet suitable for biocatalytic applications. We show that an enzyme that converts ferulic acid to vanillin in one step could be constructed by modifying a microbial dioxygenase-type enzyme. The engineered enzyme is of biotechnological importance as a tool for the production of vanillin and related compounds via biocatalytic processes and metabolic engineering. The results of this study may also provide useful insights for understanding vanillin biosynthesis in plants.
Collapse
Affiliation(s)
- Shizuka Fujimaki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satsuki Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Shota Shimada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
6
|
Zheng R, Chen Q, Yang Q, Gong T, Hu CY, Meng Y. Engineering a Carotenoid Cleavage Oxygenase for Coenzyme-Free Synthesis of Vanillin from Ferulic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12209-12218. [PMID: 38751167 DOI: 10.1021/acs.jafc.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
One-pot biosynthesis of vanillin from ferulic acid without providing energy and cofactors adds significant value to lignin waste streams. However, naturally evolved carotenoid cleavage oxygenase (CCO) with extreme catalytic conditions greatly limited the above pathway for vanillin bioproduction. Herein, CCO from Thermothelomyces thermophilus (TtCCO) was rationally engineered for achieving high catalytic activity under neutral pH conditions and was further utilized for constructing a one-pot synthesis system of vanillin with Bacillus pumilus ferulic acid decarboxylase. TtCCO with the K192N-V310G-A311T-R404N-D407F-N556A mutation (TtCCOM3) was gradually obtained using substrate access channel engineering, catalytic pocket engineering, and pocket charge engineering. Molecular dynamics simulations revealed that reducing the site-blocking effect in the substrate access channel, enhancing affinity for substrates in the catalytic pocket, and eliminating the pocket's alkaline charge contributed to the high catalytic activity of TtCCOM3 under neutral pH conditions. Finally, the one-pot synthesis of vanillin in our study could achieve a maximum rate of up to 6.89 ± 0.3 mM h-1. Therefore, our study paves the way for a one-pot biosynthetic process of transforming renewable lignin-related aromatics into valuable chemicals.
Collapse
Affiliation(s)
- Rong Zheng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qihang Chen
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qingbo Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| |
Collapse
|
7
|
Li J, Lu X, Zou X, Ye BC. Recent Advances in Microbial Metabolic Engineering for Production of Natural Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4538-4551. [PMID: 38377566 DOI: 10.1021/acs.jafc.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.
Collapse
Affiliation(s)
- Jin Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiumin Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Zhang Y, Cheng C, Fu B, Long T, He N, Fan J, Xue Z, Chen A, Yuan J. Microbial Upcycling of Depolymerized Lignin into Value-Added Chemicals. BIODESIGN RESEARCH 2024; 6:0027. [PMID: 39364043 PMCID: PMC11449046 DOI: 10.34133/bdr.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 10/05/2024] Open
Abstract
Lignin is one of the most widespread organic compounds found on earth, boasting a wealth of aromatic molecules. The use of lignin feedstock for biochemical productions is of great importance for achieving "carbon neutrality." In recent years, a strategy for lignin valorization known as the "bio-funnel" has been proposed as a means to generate a variety of commercially valuable chemicals from lignin-derived compounds. The implementation of biocatalysis and metabolic engineering techniques has substantially advanced the biotransformation of depolymerized lignin into chemicals and materials within the supply chain. In this review, we present an overview of the latest advancements in microbial upcycling of depolymerized lignin into value-added chemicals. Besides, the review provides insights into the problems facing current biological lignin valorization while proposing further research directions to improve these technologies for the extensive accomplishment of the lignin upcycling.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Cheng Cheng
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Bixia Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Heilongjiang 150040, China
| | - Anqi Chen
- Science Center for Future Foods, Jiangnan University, Jiangsu 214122, China
| | - Jifeng Yuan
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
9
|
Mo Q, Yuan J. Minimal aromatic aldehyde reduction (MARE) yeast platform for engineering vanillin production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:4. [PMID: 38184607 PMCID: PMC10771647 DOI: 10.1186/s13068-023-02454-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Vanillin represents one of the most widely used flavoring agents in the world. However, microbial synthesis of vanillin is hindered by the host native metabolism that could rapidly degrade vanillin to the byproducts. RESULTS Here, we report that the industrial workhorse Saccharomyces cerevisiae was engineered by systematic deletion of oxidoreductases to improve the vanillin accumulation. Subsequently, we harnessed the minimal aromatic aldehyde reduction (MARE) yeast platform for de novo synthesis of vanillin from glucose. We investigated multiple coenzyme-A free pathways to improve vanillin production in yeast. The vanillin productivity in yeast was enhanced by multidimensional engineering to optimize the supply of cofactors (NADPH and S-adenosylmethionine) together with metabolic reconfiguration of yeast central metabolism. The final yeast strain with overall 24 genetic modifications produced 365.55 ± 7.42 mg l-1 vanillin in shake-flasks, which represents the best reported vanillin titer from glucose in yeast. CONCLUSIONS The success of vanillin overproduction in budding yeast showcases the great potential of synthetic biology for the creation of suitable biocatalysts to meet the requirement in industry. Our work lays a foundation for the future implementation of microbial production of aromatic aldehydes in budding yeast.
Collapse
Affiliation(s)
- Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
| |
Collapse
|
10
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
11
|
Zhang Y, Meng W, He Y, Chen Y, Shao M, Yuan J. Multidimensional optimization for accelerating light-powered biocatalysis in Rhodopseudomonas palustris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:160. [PMID: 37891652 PMCID: PMC10612212 DOI: 10.1186/s13068-023-02410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Whole-cell biocatalysis has been exploited to convert a variety of substrates into high-value bulk or chiral fine chemicals. However, the traditional whole-cell biocatalysis typically utilizes the heterotrophic microbes as the biocatalyst, which requires carbohydrates to power the cofactor (ATP, NAD (P)H) regeneration. RESULTS In this study, we sought to harness purple non-sulfur photosynthetic bacterium (PNSB) as the biocatalyst to achieve light-driven cofactor regeneration for cascade biocatalysis. We substantially improved the performance of Rhodopseudomonas palustris-based biocatalysis using a highly active and conditional expression system, blocking the side-reactions, controlling the feeding strategy, and attenuating the light shading effect. Under light-anaerobic conditions, we found that 50 mM ferulic acid could be completely converted to vanillyl alcohol using the recombinant strain with 100% efficiency, and > 99.9% conversion of 50 mM p-coumaric acid to p-hydroxybenzyl alcohol was similarly achieved. Moreover, we examined the isoprenol utilization pathway for pinene synthesis and 92% conversion of 30 mM isoprenol to pinene was obtained. CONCLUSIONS Taken together, these results suggested that R. palustris could be a promising host for light-powered biotransformation, which offers an efficient approach for synthesizing value-added chemicals in a green and sustainable manner.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Wenchang Meng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuting He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuhui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Mingyu Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
12
|
Dalwani S, Wierenga RK. Enzymes of the crotonase superfamily: Diverse assembly and diverse function. Curr Opin Struct Biol 2023; 82:102671. [PMID: 37542911 DOI: 10.1016/j.sbi.2023.102671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The crotonase fold is generated by a framework of four repeats of a ββα-unit, extended by two helical regions. The active site of crotonase superfamily (CS) enzymes is located at the N-terminal end of the helix of the third repeat, typically being covered by a C-terminal helix. A major subset of CS-enzymes catalyzes acyl-CoA-dependent reactions, allowing for a diverse range of acyl-tail modifications. Most of these enzymes occur as trimers or hexamers (dimers of trimers), but monomeric forms are also observed. A common feature of the active sites of CS-enzymes is an oxyanion hole, formed by two peptide-NH hydrogen bond donors, which stabilises the negatively charged thioester oxygen atom of the reaction intermediate. Structural properties and possible use of these enzymes for biotechnological applications are discussed.
Collapse
Affiliation(s)
- Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FI-90014, Finland.
| |
Collapse
|
13
|
Higuchi Y, Ishimaru H, Yoshikawa T, Masuda T, Sakamoto C, Kamimura N, Masai E, Takeuchi D, Sonoki T. Successful selective production of vanillic acid from depolymerized sulfite lignin and its application to poly(ethylene vanillate) synthesis. BIORESOURCE TECHNOLOGY 2023:129450. [PMID: 37406831 DOI: 10.1016/j.biortech.2023.129450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Towards lignin upgrading, vanillic acid (VA), a lignin-derived guaiacyl compound, was produced from sulfite lignin for successfully synthesizing poly(ethylene vanillate), an aromatic polymer. The engineered Sphingobium sp. SYK-6-based strain in which the genes responsible for VA/3-O-methyl gallic acid O-demethylase and syringic acid O-demethylase were disrupted was able to produce vanillic acid (VA) from the mixture consisting of acetovanillone, vanillin, VA, and other low-molecular-weight aromatics obtained by Cu(OH)2-catalyzed alkaline depolymerization of sulfite lignin and membrane fractionation. From the bio-based VA, methyl-4-(2-hydroxyethoxy)-3-methoxybenzoate was synthesized via methylesterification, hydroxyethylation, and distillation, and then it was subjected to polymerization catalyzed by titanium tetraisopropoxide. The molecular weight of the obtained poly(ethylene vanillate) was evaluated to be Mw = 13,000 (Mw/Mn = 1.99) and its melting point was 261°C. The present work proved that poly(ethylene vanillate) is able to be synthesized using VA produced from lignin for the first time.
Collapse
Affiliation(s)
- Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Hiroya Ishimaru
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yoshikawa
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takao Masuda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Daisuke Takeuchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
14
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
15
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
16
|
Kutraite I, Malys N. Development and Application of Whole-Cell Biosensors for the Detection of Gallic Acid. ACS Synth Biol 2023; 12:533-543. [PMID: 36724292 PMCID: PMC9942251 DOI: 10.1021/acssynbio.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gallic acid is a prevalent secondary plant metabolite distinguished as one of the most effective free-radical scavengers among phenolic acids. This compound is also known for its cytotoxic, anti-inflammatory, and antimicrobial activities. Bulk quantities of gallic acid are conventionally produced by acid hydrolysis of tannins, a costly and environmentally hazardous process. With the aim to develop more sustainable approaches, microbial bioproduction strategies have been attempted recently. To advance synthetic biology and metabolic engineering of microorganisms for gallic acid production, we characterize here a transcription factor-based inducible system PpGalR/PPP_RS13150 that responds to the extracellular gallic acid in a dose-dependent manner in Pseudomonas putida KT2440. Surprisingly, this compound does not mediate induction when PpGalR/PPP_RS13150 is used in non-native host background. We show that the activation of the inducible system requires gallate dioxygenase activity encoded by galA gene. The 4-oxalomesaconic acid, an intermediate of gallic acid-metabolism, is identified as the effector molecule that interacts with the transcription factor GalR mediating activation of gene expression. Introduction of galA gene along galR enables development of biosensors suitable for detection and monitoring of gallic acid extracellularly using non-native hosts such as E. coli and C. necator. Moreover, the P. putida-based biosensor's applicability is demonstrated by detecting and measuring gallic acid in extracts of Camellia sinensis leaves. This study reports the strategy, which can be applied for developing gallic acid biosensors using bacterial species outside Pseudomonas genus.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,
| |
Collapse
|
17
|
Dong Y, Dong L, Gu X, Wang Y, Liao Y, Luque R, Chen Z. Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”. GREEN CHEMISTRY 2023; 25:3791-3815. [DOI: 10.1039/d3gc00241a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Catalytic production of several representative active pharmaceutical ingredients (APIs) from lignin.
Collapse
Affiliation(s)
- Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Liao
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Preparation of Eu(III) Complexes Containing Maleopimaric Acid Anhydride with Ultra-narrow and Efficient Fluorescence Emission for High Determination on Gallic Acid in Acetonitrile Solution. J Fluoresc 2023; 33:223-237. [PMID: 36399250 DOI: 10.1007/s10895-022-03076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Two novel Eu(III) complexes constructed by maleopimaric acid anhydride (MPA) and 2,2'-bipyridyl (Bpy) / 1, 10-phenanthroline (Phen), named as MPA-Bpy-Eu / MPA-Phen-Eu, have been synthesized by a one-step precipitation method. FTIR, UV, TG, elemental analysis, XPS, and ESI-MS revealed the successful coordination of Eu(III) ions with MPA and Bpy / Phen through Eu-O and Eu-N bonds, respectively. Introducing MPA into coordinate structure increased the electron cloud density in 3d5/2 orbit of Eu(III) ions, enhanced the absolute quantum yields of MPA-Bpy-Eu (89.27%) and MPA-Phen-Eu (94.41%), and decreased the full width at half maxima of 5D0 → 7F2 transitions of MPA-Bpy-Eu (2.23 nm) and MPA-Phen-Eu (2.93 nm), respectively. The fluorescence quenching experiments showed that there was a good linear relationship between the relative fluorescence intensity of MPA-Bpy-Eu and gallic acid (GA) concentration in acetonitrile solution in the range of 0 to 8.41 × 10-2 mM. The results of UV-vis spectra, the fluorescence lifetimes, and the quantum yields demonstrated that the dynamic quenching model played a major role in the quenching process of GA on MPA-Bpy-Eu. The quenching process of GA on MPA-Phen-Eu involved dual fluorescence quenching mechanistic pathways, including static and dynamic models.
Collapse
|
19
|
Development of shuttle vectors for rapid prototyping of engineered Synechococcus sp. PCC7002. Appl Microbiol Biotechnol 2022; 106:8169-8181. [PMID: 36401644 DOI: 10.1007/s00253-022-12289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.
Collapse
|
20
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
21
|
Zhou H, Xu Z, Cai C, Li J, Jin M. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization. BIORESOURCE TECHNOLOGY 2022; 347:126348. [PMID: 34798253 DOI: 10.1016/j.biortech.2021.126348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Vanillin bioconversion is important for the biological lignin valorization. In this study, the obscure vanillin metabolic distribution in Rhodoccous opacus PD630 was deciphered by combining the strategies of intermediate detection, putative gene prediction, and target gene verification. The results suggest that approximately 10% (mol/mol) of consumed vanillin is converted to vanillic acid for further metabolism, and a large amount is converted to dead-end vanillyl alcohol in R. opacus PD630. Subsequently, five vanillin reductases were identified in R. opacus PD630, among which Pd630_LPD03722 product exhibited the greatest activity. With the detected metabolic distributions of vanillin, the conversion of vanillin to muconic acid was facilitated by deleting domestic vanillin reductase genes and introducing vanillin dehydrogenase from Sphingobium sp. SYK-6. Ultimately, the muconic acid yield from vanillin increased to 97.83% (mol/mol) from the initial 10% (mol/mol). Moreover, this study demonstrated the existence of vanillin reductases in Escherichia coli, Bacillus subtilis, and Corynebacterium glutamicum.
Collapse
Affiliation(s)
- Huarong Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|